
invenio-files-rest Documentation
Release 1.5.0

CERN

Jul 04, 2023

CONTENTS

1 User’s Guide 3
1.1 Overview . 3
1.2 Installation . 6
1.3 Configuration . 6
1.4 Usage . 8

2 API Reference 23
2.1 API Docs . 23

3 Additional Notes 57
3.1 Contributing . 57
3.2 Changes . 59
3.3 License . 60
3.4 Contributors . 61

Python Module Index 63

Index 65

i

ii

invenio-files-rest Documentation, Release 1.5.0

Invenio-Files-REST is a files storage module. It allows you to store and retrieve files in a similar way to Amazon S3
APIs.

Features:

• Files storage with configurable storage backends

• Secure REST APIs

• Support for large file uploads and multipart upload.

• Customizable access control

• File integrity monitoring

Further documentation is available on https://invenio-files-rest.readthedocs.io/.

CONTENTS 1

https://github.com/inveniosoftware/invenio-files-rest/actions?query=workflow%3ACI
https://coveralls.io/r/inveniosoftware/invenio-files-rest
https://pypi.org/pypi/invenio-files-rest
https://github.com/inveniosoftware/invenio-files-rest/blob/master/LICENSE
https://invenio-files-rest.readthedocs.io/

invenio-files-rest Documentation, Release 1.5.0

2 CONTENTS

CHAPTER

ONE

USER’S GUIDE

This part of the documentation will show you how to get started in using Invenio-Files-REST.

1.1 Overview

Invenio-Files-REST is a files storage module. It allows you to store and retrieve files in a similar way to Amazon S3
APIs. It provides a set of features:

• An abstraction of physical files storage.

• Configurable storage backends with the ability to build your very own.

• A robust REST API.

• Highly customizable access-control.

• Secure file handling.

• Integrity checking mechanism.

• Support for large file uploads and multipart upload.

• Signals for system events.

The REST API follows best practices and supports, e.g.:

• Content negotiation and links headers.

• Cache control via ETags and Last-Modified headers.

• Optimistic concurrency control via ETags.

• Rate-limiting, Cross-Origin Resource Sharing, and various security headers.

Here is an introduction of the main concepts.

3

invenio-files-rest Documentation, Release 1.5.0

1.1.1 The physical layer

Provides physical access to files defining the storage locations and how to perform operations.

Location

A Location is a representation of a storage system. A location is described by its name and URI. The URI could be a
path in a local directory or a remote system. For example, a location could have as a name shared-folder and URI
/mnt/shared.

Among all defined locations, one has to be set as the default.

You can learn how to use Locations in the section Create a location.

Storage

A Storage provides the interface to interact with a Location and perform basic operations such as retrieve, store or
delete files.

Multiple storage can be useful, for example, to represent offline/online location so that the system known if it can serve
files and/or what is the reliability.

By default, Invenio-Files-REST implements a storage for local files invenio_files_rest.storage.
PyFSFileStorage. It controls how files are physically stored, for example the folders and files structure.

4 Chapter 1. User’s Guide

invenio-files-rest Documentation, Release 1.5.0

You can create new storage implementations and configure Invenio to use any existing storage. Check Storage Backends
documentation for detailed instructions on how to build your own.

An example of a remote storage system is implemented in the module Invenio-S3 which offers integration with any S3
REST API compatible object storage.

FileInstance

A file on disk is represented by a FileInstance. A FileInstance describes the path to the file, the used storage, the
size and the checksum of the file on disk.

To summarize

FileInstances are stored on disk in a specified Location using Storage APIs.

1.1.2 The abstraction layer

Provides an abstract way to logically represent, organise and manipulate files. This abstraction layer allows to perform
files operations without physically accessing files.

ObjectVersion

An ObjectVersion is the logical representation of a version of a file and metadata at a specific point in time. It contains
the reference to the FileInstance that it corresponds. For example, the file name is stored in the ObjectVersion
metadata.

Note: File names could contain non-alphanumeric characters, which could be a problem depending on your file
system. For example, a user could upload a file named thesis&first*v1.pdf.

In Invenio-Files-REST, the default Storage will save the file in a tree of directories that are uniquely named. The
file name will be changed to data (with no extension) and the original file name will be stored in the metadata of the
ObjectVersion.

The final path to the file on disk will be something like /mnt/shared/2a/4f/39-5033-af42-k42m/data.

When an ObjectVersion has no reference to a FileInstance, it marks that the file has been logically (and not physi-
cally) deleted. This is also known as delete marker (or soft deletion).

Given multiple ObjectVersions of the same file, the latest (or most recent) version is referred to as the HEAD.

ObjectVersions are very useful to perform operations on file’s metadata without directly accessing to the storage. For
example, given that the filename is part of the ObjectVersion metadata, a rename operation is simply a database query
to change its value.

Moreover, multiple ObjectVersion can reference the same FileInstance. This allows to perform some operations
more efficiently, such as create a snapshot without physically duplicating files or migrating data.

Let’s see an example

A user uploads a new file called thesis.pdf.

With location and storage mentioned above, the file will be physically stored in /mnt/shared in a tree of folders and
with filename data (its FileInstance URI will be something like /<folders>/data).

The logical representation of the file, the ObjectVersion, will contain the reference to that FileInstance and it will also
store the filename thesis.pdf.

1.1. Overview 5

https://invenio-s3.readthedocs.io/

invenio-files-rest Documentation, Release 1.5.0

If, afterwards, the file is renamed to mythesis.pdf, a new ObjectVersion will be created with the new filename keeping
the reference to the same FileInstance.

If the file is then removed, a new ObjectVersion will be created with no reference to any FileInstance, without physically
deleting the file on disk.

Bucket

A Bucket is a container for ObjectVersion objects. Just as in a traditional file system where files are contained in
folders, each ObjectVersion has to be contained in a Bucket. The Bucket has a reference to the Location where
files are stored.

Buckets are useful to create collections of objects and to act on them. For example, bucket keeps track of the total size
of the object if contains and allows definitions of quotas.

A bucket can also be marked as deleted, in which case the contents become inaccessible.

To summarize

Bucket contains ObjectVersions, a version of a file and its metadata. Each ObjectVersion has a reference to a FileIn-
stance.

1.1.3 REST APIs

Invenio-Files-REST provides a set of REST APIs to create or manage resources such as Buckets or ObjectVersions.
You can learn more about it in the REST APIs section of the documentation.

1.2 Installation

Invenio-Files-REST is on PyPI so all you need is:

$ pip install invenio-files-rest

1.3 Configuration

Invenio Files Rest module configuration file.

invenio_files_rest.config.FILES_REST_DEFAULT_MAX_FILE_SIZE = None

Default maximum file size for a bucket in bytes. None if unlimited.

invenio_files_rest.config.FILES_REST_DEFAULT_QUOTA_SIZE = None

Default quota size for a bucket in bytes. None if unlimited.

invenio_files_rest.config.FILES_REST_DEFAULT_STORAGE_CLASS = 'S'

Default storage class. Must be one of FILES_REST_STORAGE_CLASS_LIST.

invenio_files_rest.config.FILES_REST_FILE_TAGS_HEADER = 'X-Invenio-File-Tags'

Header for updating file tags.

6 Chapter 1. User’s Guide

invenio-files-rest Documentation, Release 1.5.0

invenio_files_rest.config.FILES_REST_FILE_URI_MAX_LEN = 255

Maximum length of the FileInstance.uri field.

Warning: Setting this variable to anything higher than 255 is only supported with PostgreSQL database.

invenio_files_rest.config.FILES_REST_MIN_FILE_SIZE = 1

Minimum file size when uploading, in bytes (do not allow empty files).

invenio_files_rest.config.FILES_REST_MULTIPART_CHUNKSIZE_MAX = 5368709120

Maximum chunk size in bytes of multipart objects.

invenio_files_rest.config.FILES_REST_MULTIPART_CHUNKSIZE_MIN = 5242880

Minimum chunk size in bytes of multipart objects.

invenio_files_rest.config.FILES_REST_MULTIPART_EXPIRES = datetime.timedelta(days=4)

Time delta after which a multipart upload is considered expired.

invenio_files_rest.config.FILES_REST_MULTIPART_MAX_PARTS = 10000

Maximum number of parts when uploading files with multipart uploads.

invenio_files_rest.config.FILES_REST_MULTIPART_PART_FACTORIES =
['invenio_files_rest.views:default_partfactory',
'invenio_files_rest.views:ngfileupload_partfactory']

Import path of factories used when parsing upload params for multipart.

invenio_files_rest.config.FILES_REST_OBJECT_KEY_MAX_LEN = 255

Maximum length of the ObjectVersion.key field.

Warning: Setting this variable to anything higher than 255 is only supported with PostgreSQL database.

invenio_files_rest.config.FILES_REST_PERMISSION_FACTORY =
'invenio_files_rest.permissions.permission_factory'

Permission factory to control the files access from the REST interface.

invenio_files_rest.config.FILES_REST_SIZE_LIMITERS =
'invenio_files_rest.limiters.file_size_limiters'

Import path of file size limiters factory to control bucket size limits.

invenio_files_rest.config.FILES_REST_STORAGE_CLASS_LIST = {'A': 'Archive', 'S':
'Standard'}

Storage class list defines the systems storage classes.

Storage classes are useful for e.g. defining the type of storage an object is located on (e.g. offline/online), so that
the system known if it can serve the file and/or what is the reliability.

invenio_files_rest.config.FILES_REST_STORAGE_FACTORY =
'invenio_files_rest.storage.pyfs_storage_factory'

Import path of factory used to create a storage instance.

invenio_files_rest.config.FILES_REST_STORAGE_PATH_DIMENSIONS = 2

Number of directory levels created when generating the path of a file.

For example, if split length set to 2 and dimension to 3, the final path will be a2/ad/4k/c9-8j39-34jn/.

1.3. Configuration 7

invenio-files-rest Documentation, Release 1.5.0

invenio_files_rest.config.FILES_REST_STORAGE_PATH_SPLIT_LENGTH = 2

Number of chars to use as folder name when generating the path of a file.

For example, if split length set to 4 and dimension to 4, the final path will be a2ad/4kc9/8j39-34jn/.

invenio_files_rest.config.FILES_REST_TASK_WAIT_INTERVAL = 2

Interval in seconds between sending a whitespace to not close connection.

invenio_files_rest.config.FILES_REST_TASK_WAIT_MAX_SECONDS = 600

Maximum number of seconds to wait for a task to finish.

invenio_files_rest.config.FILES_REST_UPLOAD_FACTORIES =
['invenio_files_rest.views:stream_uploadfactory',
'invenio_files_rest.views:ngfileupload_uploadfactory']

Import path of factories used when parsing upload parameters.

Note: Factories that reads request.stream directly must be first in the list, otherwise Werkzeug’s form-data
parser will read the stream.

invenio_files_rest.config.FILES_REST_XSENDFILE_ENABLED = False

Use the X-Accel-Redirect header to stream the file through a reverse proxy(e.g NGINX).

invenio_files_rest.config.FILES_REST_XSENDFILE_RESPONSE_FUNC(obj)
Function for the creation of a file streaming redirect response.

invenio_files_rest.config.MAX_CONTENT_LENGTH = 16777216

Maximum allowed content length for form data.

This value limits the maximum file upload size via multipart-formdata and is a Flask configuration vari-
able that by default is unlimited. The value must be larger than the maximum part size you want to accept
via application/multipart-formdata (used by e.g. ng-file upload). This value only limits file upload size via
application/multipart-formdata and in particular does not restrict the maximum file size possible when stream-
ing a file in the body of a PUT request.

Flask, by default, saves any file bigger than 500kb to a temporary file on disk, thus do not set this value to large
or you may run out of disk space on your nodes.

1.4 Usage

Invenio-Files-REST module.

This guide will show you how to get started with Invenio-Files-REST. It assumes that you already have knowledge of
Flask applications and Invenio modules.

It will then explain key topics and concepts of this module.

8 Chapter 1. User’s Guide

invenio-files-rest Documentation, Release 1.5.0

1.4.1 Getting started

You will learn how to create a new Location, a Bucket and an ObjectVersion using the programmatic APIs of Invenio-
Files-REST.

First, you will have to setup your virtualenv environment and install this module along with all it’s dependencies.

After that, start a Python shell and execute the following commands:

>>> from flask import Flask
>>> app = Flask('myapp')

This is the initial configuration needed to have things running:

>>> app.config['BROKER_URL'] = 'redis://'
>>> app.config['CELERY_RESULT_BACKEND'] = 'redis://'
>>> app.config['DATADIR'] = 'data'
>>> app.config['FILES_REST_MULTIPART_CHUNKSIZE_MIN'] = 4
>>> app.config['REST_ENABLE_CORS'] = True
>>> app.config['SECRET_KEY'] = 'CHANGEME'
>>> app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://'
>>> app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

>>> allow_all = lambda *args, **kwargs: \
... type('Allow', (), {'can': lambda self: True})()
>>> app.config['FILES_REST_PERMISSION_FACTORY'] = allow_all

Relevant configuration variables will be explained later on. Now let’s initialize all required Invenio extensions:

>>> import shutil
>>> from os import makedirs
>>> from os.path import dirname, exists, join
>>> from pprint import pprint
>>> import json

>>> from invenio_i18n import Babel
>>> from flask_menu import Menu
>>> from invenio_db import InvenioDB, db
>>> from invenio_rest import InvenioREST
>>> from invenio_admin import InvenioAdmin
>>> from invenio_accounts import InvenioAccounts
>>> from invenio_access import InvenioAccess
>>> from invenio_accounts.views import blueprint as accounts_blueprint
>>> from invenio_celery import InvenioCelery
>>> from invenio_files_rest import InvenioFilesREST
>>> from invenio_files_rest.views import blueprint

>>> ext_babel = Babel(app)
>>> ext_menu = Menu(app)
>>> ext_db = InvenioDB(app)
>>> ext_rest = InvenioREST(app)
>>> ext_admin = InvenioAdmin(app)
>>> ext_accounts = InvenioAccounts(app)
>>> ext_access = InvenioAccess(app)

1.4. Usage 9

invenio-files-rest Documentation, Release 1.5.0

You can now initialize Invenio-Files-REST. When using Invenio-Files-REST as dependency of an Invenio applicaton,
the REST views are automatically registered via entry points. For this example, you will have to register them manually
and push a Flask application context:

>>> ext_rest = InvenioFilesREST(app)

>>> app.register_blueprint(accounts_blueprint)
>>> app.register_blueprint(blueprint)

>>> app.app_context().push()

Let’s create the database and tables, using an in-memory SQLite database:

>>> db.create_all()

When you setup Invenio-Files-REST for the first time, you will have to define a default Location. It can be local or
remote and it will be accessed via its URI.

Create a location

For this example, you will use a temporary directory:

>>> from invenio_files_rest.models import Location
>>> d = app.config['DATADIR'] # folder `data`
>>> if exists(d): shutil.rmtree(d)
>>> makedirs(d)
>>> loc = Location(name='local', uri=d, default=True)
>>> db.session.add(loc)
>>> db.session.commit()

Create a bucket

In order to create, modify or delete files, you have to create a files container first, the Bucket.

>>> from invenio_files_rest.models import Bucket
>>> b1 = Bucket.create(loc)
>>> db.session.commit()

Create objects

Files are represented by ObjectVersions. After creating a bucket, you can now add files to it, for example:

>>> from io import BytesIO
>>> from invenio_files_rest.models import ObjectVersion
>>> a_file = BytesIO(b"my file contents")
>>> f = ObjectVersion.create(b1, "thesis.pdf", stream=a_file)
>>> db.session.commit()

10 Chapter 1. User’s Guide

invenio-files-rest Documentation, Release 1.5.0

Retrieve objects

You can now retrieve objects. Retrieve the bucket object:

>>> b = Bucket.get(b1.id)

Retrieve all ObjectVersions contained in a bucket:

>>> file_names = [ov.key for ov in ObjectVersion.get_by_bucket(b1.id)]

Retrieve a specific ObjectVersion by filename:

>>> f = ObjectVersion.get(b1.id, "thesis.pdf")

1.4.2 Data model

This is a more in-depth explanation of the concepts introduced in the Overview section.

Buckets

A bucket is a container of objects. It is uniquely identified by an ID. Buckets have a default Location and Storage class.
Individual objects in the bucket can however have different Locations and Storage classes.

The size field stores the current size of the bucket. When a new object is added or completely removed, its size is
updated.

Buckets can have constraints on the maximum amount of objects that they can contain. It is controlled
by the function invenio_files_rest.limiters.file_size_limiters(): by default, a new object can
be added to the bucket if the maximum size of the file is lower than invenio_files_rest.config.
FILES_REST_DEFAULT_MAX_FILE_SIZE and if the total quota (the sum of sizes of all files) is lower than
invenio_files_rest.config.FILES_REST_DEFAULT_QUOTA_SIZE.

Buckets can be marked as locked. When a bucket is locked, objects can be retrieved but no object can be added and
deleted.

Similarly to objects, bucket can be logically marked as deletedwithout affecting the actual content. When it is deleted,
it simply means that no objects can be retrieved or added via APIs.

Finally, buckets provide ways to create or synchronize copies: the snapshot operation creates a new copy of a bucket
with all the latest versions of the object it contains, without duplicating files on disk. The sync operation mirrors
objects contained in the source bucket to the destination bucket.

ObjectVersion

ObjectVersions are objects that represent a specific version of a file at a given point in time. ObjectVersions are uniquely
identified by its ID. They are always contained in an existing Bucket by having the reference bucket_id to it.

An ObjectVersion describes the file (FileInstance) that references with the attribute file_id. It also stores some
metadata of the file: the file name, stored in the key attribute and the version, stored in version_id attribute. The
triplet (bucket_id, key, version_id) is unique.

For a given key in a Bucket, normally the latest version in history is marked as the head.

The key has a maximum length defined via invenio_files_rest.config.FILES_REST_OBJECT_KEY_MAX_LEN.

ObjectVersion can be marked as deleted by removing its reference to the file it represents: from the user perspective,
deleting a file normally means adding a new ObjectVersion, which will be the new head, without file_id.

1.4. Usage 11

invenio-files-rest Documentation, Release 1.5.0

FileInstance

A file instance represents a file on disk. A file instance may be linked from many objects, while an object can have one
and only one file instance.

The file on disk can be retrieved by the file instance uri, which is an absolute path/URI generated when
adding the file: the base path is retrieved from the Location used for this file, and the relative path
is assigned by the file’s Storage. It is responsibility of the Storage, which is aware of the file sys-
tem that is managing, to generate a unique final path for the file. You can modify how the path
is generated with the default storage invenio_files_rest.storage.pyfs_storage_factory() by chang-
ing invenio_files_rest.config.FILES_REST_STORAGE_PATH_SPLIT_LENGTH or invenio_files_rest.
config.FILES_REST_STORAGE_PATH_DIMENSIONS.

A file instance may not be ready to be accessed, for example in case of multipart uploads: the attribute readable
marks it. It can also be marked as not writable if it cannot be deleted or replaced, for safety reasons.

checksum, last_check_at and last_check are attributes used to store information about integrity checks.

You can find the documentation of each API in the API Docs.

1.4.3 REST APIs

REST APIs allow you to perform most of the operations needed when manipulating files.

By design, Locations cannot be created using REST APIs. This is because they depend on your physical file storage
infrastructure. You will have to create them in advance when setting up your Invenio instance.

To be able to run each of the next steps, you can instantiate and start an Invenio instance as described here.

Create a bucket

A bucket can be created by a POST request to /files. The response will contain the unique ID of the bucket.

$ curl -X POST http://localhost:5000/api/files

{
"max_file_size": null,
"updated": "2019-05-16T13:07:21.595398+00:00",
"locked": false,
"links": {

"self": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e",

"uploads": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e?uploads",

"versions": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e?versions"

},
"created": "2019-05-16T13:07:21.595391+00:00",
"quota_size": null,
"id": "cb8d0fa7-2349-484b-89cb-16573d57f09e",
"size": 0

}

12 Chapter 1. User’s Guide

https://invenio.readthedocs.io/en/latest/quickstart/quickstart.html#create-an-invenio-instance

invenio-files-rest Documentation, Release 1.5.0

Uploading Files

You can upload, download and modify single files via REST APIs. A file is uniquely identified within a bucket by its
name and version. Each file can have multiple versions.

Let’s upload a file called my_file.txt inside the bucket that was just created.

$ BUCKET=cb8d0fa7-2349-484b-89cb-16573d57f09e

$ echo "my file content" > my_file.txt

$ curl -i -X PUT --data-binary @my_file.txt \
"http://localhost:5000/api/files/$BUCKET/my_file.txt"

{
"mimetype": "text/plain",
"updated": "2019-05-16T13:10:22.621533+00:00",
"links": {

"self": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e/my_file.txt",

"version": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e/my_file.txt?
versionId=7f62676d-0b8e-4d77-9687-8465dc506ca8",

"uploads": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e/
my_file.txt?uploads"

},
"is_head": true,
"tags": {},
"checksum": "md5:d7d02c7125bdcdd857eb70cb5f19aecc",
"created": "2019-05-16T13:10:22.617714+00:00",
"version_id": "7f62676d-0b8e-4d77-9687-8465dc506ca8",
"delete_marker": false,
"key": "my_file.txt",
"size": 14

}

If you have a new version of the file, you can upload it to the same bucket using the same filename. In this case, a new
ObjectVersion will be created.

$ echo "my file content version 2" > my_filev2.txt

$ curl -i -X PUT --data-binary @my_filev2.txt \
"http://localhost:5000/api/files/$BUCKET/my_file.txt"

{
"mimetype": "text/plain",
"updated": "2019-05-16T13:11:22.621533+00:00",
"links": {

"self": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e/my_file.txt",

(continues on next page)

1.4. Usage 13

invenio-files-rest Documentation, Release 1.5.0

(continued from previous page)

"version": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e/my_file.txt?
versionId=24bf075f-09f4-42f8-9fbe-3f00b8aac3e8",

"uploads": "http://localhost:5000/api/files/
cb8d0fa7-2349-484b-89cb-16573d57f09e/
my_file.txt?uploads"

},
"is_head": true,
"tags": {},
"checksum": "md5:fe76512703258a894e56bac89d2e8dec",
"created": "2019-05-16T13:11:22.617714+00:00",
"version_id": "24bf075f-09f4-42f8-9fbe-3f00b8aac3e8",
"delete_marker": false,
"key": "my_file.txt",
"size": 13

}

When integrating the REST APIs to upload files via a web application, you might use JavaScript to improve user
experience. Invenio-Files-REST provides out of the box integration with JavaScript uploaders. See the JS Uploaders
section for more information.

Invenio-Files-REST also provides different ways to upload large files. See the Multipart Upload and Large Files
sections for more information.

Serving files

To serve and allow download of files, you can perform a GET request specifying the bucket and the filename used to
upload the file.

$ curl -i -X GET "http://localhost:5000/api/files/$BUCKET/my_file.txt"

You can also list files or download specific versions of files. See the REST APIs reference documentation below for
more information.

Be aware that there are security implications to take into account when serving files. See the Security for more infor-
mation.

Invenio-Files-Rest provides also the functionality to serve your files directly from your external storage. This is
achieved by attaching the X-Accel-Redirect header to the response, which will then be redirected by your Web Proxy
(e.g. NGINX, Apache) to your external storage, finally streaming the file directly to the user. To use this fea-
ture you will need to configure your Web Proxy accordingly and then enable the invenio_files_rest.config.
FILES_REST_XSENDFILE_ENABLED.

API Reference

Default Location

Create a bucket:

POST /files/

14 Chapter 1. User’s Guide

https://www.nginx.com/resources/wiki/start/topics/examples/x-accel/

invenio-files-rest Documentation, Release 1.5.0

Buckets

Check if bucket exists, returning either a 200 or 404:

HEAD /files/<bucket_id>

Retrieve the latest version of all objects in bucket:

GET /files/<bucket_id>

Retrieve all versions of files in a bucket:

GET /files/<bucket_id>?versions

Return list of multipart uploads:

GET /files/<bucket_id>?uploads

ObjectVersions

Initiate multipart upload (see Multipart Upload):

POST /files/<bucket_id>/<file_name>?
uploads&size=<total_size>&partSize=<part_size>

Finalize multipart upload:

POST /files/<bucket_id>/<file_name>?uploadId=<upload_id>

Upload a file to a bucket:

PUT /files/<bucket_id>/<file_name>

Upload part of in-progress multipart upload to a bucket:

PUT /files/<bucket_id>/<file_name>?uploadId=<upload_id>&part=<part_number>

Retrieve the latest version of a given file. By default, the file is returned with the header 'Content-Disposition':
'inline'. Be aware that the browser will try to preview it.

GET /files/<bucket_id>/<file_name>

Download the latest version of a given file. It will return the same response as the request above but with the response
header 'Content-Disposition': 'attachment' to instruct the browser trigger a download.

GET /files/<bucket_id>/<file_name>?download

Retrieve a specific version of a given file:

GET /files/<bucket_id>/<file_name>?versionId=<version_id>

Retrieve the list of parts of a multipart upload:

1.4. Usage 15

invenio-files-rest Documentation, Release 1.5.0

GET /files/<bucket_id>/<file_name>?uploadId=<id_number>

Mark an object as deleted (see Deleting files):

DELETE /files/<bucket_id>/<file_name>

Permanently erase an object and the physical file on disk:

DELETE /files/<bucket_id>/<file_name>?versionId=<version_id>

Abort multipart upload:

DELETE /files/<bucket_id>/<file_name>?uploadId=<upload_id>

1.4.4 Deleting files

A delete operation can be of two types:

1. mark an object as deleted, allowing the possibility of restoring a deleted file (also called delete marker or soft
deletion).

2. permanently remove any trace of an object and referenced file on disk (also called hard deletion).

Soft deletion

Technically, it creates a new ObjectVersion, that becomes the new head, with no reference to a FileInstance. It is
possible to revert it by getting the previous version.

This operation will not access to the file on disk and it will leave it untouched.

You can soft delete using REST APIs:

DELETE /files/<bucket_id>/<file_name>

Hard deletion

Given a specific object version, it will delete the ObjectVersion, the referenced FileInstance and the file on disk. If the
deleted version was the head, it will then set the previous object as the new head.

The deletion of files on disk will not happen immediately. This is because it is done via an asynchronous task to ensure
that the FileInstance is safely removed from the database in case the low level operation of file removal on disk fails for
any unexpected reason.

You can hard delete a file using REST APIs:

DELETE /files/<bucket_id>/<file_name>?versionId=<version_id>

REST APIs do not allow to perform delete operations that can affect multiple objects at the same time. For advanced
use cases, you will to use the Invenio-Files-REST APIs programmatically.

Note: For safety reasons, the deletion will fail if the file that you want to delete is referenced by multiple ObjectVer-
sions, for example in case of Buckets snapshots.

16 Chapter 1. User’s Guide

invenio-files-rest Documentation, Release 1.5.0

1.4.5 Authorization

Invenio-Files-REST relies on Invenio-Access to implement files authorization. The following documentation assumes
that you already have knowledge of how authorization works on Invenio.

Invenio-Files-REST defines a set of actions for operations on Bucket and ObjectVersions that can be used to implement
authorization as you need:

• files-rest-location-update

• files-rest-bucket-read

• files-rest-bucket-read-versions

• files-rest-bucket-update

• files-rest-bucket-listmultiparts

• files-rest-object-read

• files-rest-object-read-version

• files-rest-object-delete

• files-rest-object-delete-version

• files-rest-multipart-read

• files-rest-multipart-delete

Response codes

If the authorization for an action fails, Invenio-Files-REST normally returns a 403 response code for authenticated
users, 401 otherwise. For security reasons, when trying to retrieve an unauthorized file, it will return a 404 instead to
hide the existence or non-existence of the file.

Authorization definition

The default permission factory invenio_files_rest.permissions.permission_factory will authorize users
that has Needs that fulfill the actions listed above. This means that by default no user will be authorized (with the
exception of any superuser).

Depending on how you are planning to integrate Invenio-Files-REST in your Invenio application, you might want to
decide how to give permissions for operations on files.

If you plan to give authorization to specific users or roles, you can use the default permission factory and assign user
or roles to the actions listed above as described in the Invenio-Access documentation.

If instead you want to define permissions based on other object, for example on records to which the files are
attached to, then you will have to define your own permission factory and used via the configuration variable
invenio_files_rest.config.FILES_REST_PERMISSION_FACTORY .

See invenio_files_rest.permissions for more documentation.

1.4. Usage 17

https://invenio-access.readthedocs.io

invenio-files-rest Documentation, Release 1.5.0

1.4.6 Security

When serving files, you will have to take into account any security implications. Here you can find some recommen-
dations to mitigate possible vulnerabilities, such as Cross-Site Scripting (XSS):

1. If possible, serve user uploaded files from a separate domain (not a subdomain).

2. By default, Invenio-Files-REST sets some response headers to prevent the browser from rendering and executing
HTML files. See invenio_files_rest.helpers.send_stream() for more information.

3. Prefer file download instead of allowing the browser to preview any file, by adding the ?download URL query
argument

1.4.7 Signals

Invenio-Files-REST supports signals that can be used to react to events.

Events are sent whenever a file is downloaded, uploaded or deleted.

As an example, let’s listen to the file download event:

from invenio_files_rest.signals import file_downloaded

def after_file_downloaded(event, sender_app, obj=None, **kwargs):
print("File downloaded {0}".format(obj))

listener = file_downloaded.connect(after_file_downloaded)
Request to download a file for the event to trigger

See invenio_files_rest.signals for more documentation.

Integrity

Invenio-Files-REST computes and stores checksums when files are uploaded and it allows you to set up periodic tasks
to regularly re-validate files integrity.

By default, it uses MD5 to compute checksums. You can override this by subclassing invenio_files_rest.storage.
FileStorage.

You can use the tasks invenio_files_rest.tasks.verify_checksum() and invenio_files_rest.tasks.
schedule_checksum_verification() to set up periodic tasks to perform checksum verifications on single files
or batches and provide reports.

Let’s create a periodic task to compute checksums:

CELERY_BEAT_SCHEDULE = {
'file-checks': {
'task': 'invenio_files_rest.tasks.schedule_checksum_verification',
'schedule': timedelta(hours=1),

}
}

By default, invenio_files_rest.tasks.schedule_checksum_verification()will generate batches of files to
check using some predefined constraints, in order to throttle the execution rate of the checks. It will then spawn a celery
task invenio_files_rest.tasks.verify_checksum() for each of the file in the set.

You can customize most of these parameters by passing the method arguments to the schedule definition.

18 Chapter 1. User’s Guide

invenio-files-rest Documentation, Release 1.5.0

Keep in mind that you need to have celerybeat running.

1.4.8 Storage Backends

Invenio-Files-REST provides a default implementation of storage factory invenio_files_rest.storage.
PyFSFileStorage used when performing operation on files in the defined locations. The PyFSFileStorage class
uses PyFilesystem to access the file system.

Build your own Storage Backend

In order to use a different storage backend, you can implement the invenio_files_rest.storage.FileStorage
interface.

Mandatory methods to implement:

• initialize

• open

• save

• update

• delete

Optional methods to implement:

• send_file

• checksum

• copy

• _init_hash

• _compute_checksum

• _write_stream

Then, you will have to re-implement a storage factory in a similar way as the default invenio_files_rest.
storage.pyfs_storage_factory() and set configuration variable invenio_files_rest.config.
FILES_REST_STORAGE_FACTORY .

1.4.9 JS Uploaders

Some JS uploaders do not allow you to customize the HTTP request that is sent to the REST APIs when uploading a
file. If the default implementation provided by Invenio-Files-REST is not compatible, you will have to implement your
own custom factory to adapt the JS uploader request to Invenio-Files-REST.

When using the AngularJS uploader ng-file-upload, Invenio-Files-REST already provides a compatible factory,
invenio_files_rest.views.ngfileupload_uploadfactory().

If you have to create a new custom factory, you have to:

1. Create your own factory similar to invenio_files_rest.views.ngfileupload_uploadfactory().

2. Instruct Invenio-Files-REST to use it by setting the configuration variables invenio_files_rest.
config.FILES_REST_MULTIPART_PART_FACTORIES and invenio_files_rest.config.
FILES_REST_UPLOAD_FACTORIES

1.4. Usage 19

https://www.pyfilesystem.org/
https://github.com/danialfarid/ng-file-upload

invenio-files-rest Documentation, Release 1.5.0

1.4.10 Multipart Upload

You might want to optimize upload in case of large files. Invenio-Files-REST allows you to upload parts of the same
file in parallel via multiparts uploads.

A multipart upload requires that each part of the file has the same size, except for the last one that can be smaller. Each
part can be uploaded at the same time and at the end of the process all parts are merged into one single file.

In case of failure when uploading one of the parts, the operation is completely aborted and all parts are deleted.

With Invenio-Files-REST, the multipart upload consists of 3 actions:

• An initial request to initiate the upload and obtain an id to be used for each part upload.

• A series of requests to upload of each part specifying the part number to correctly merge the file at the end.

• A final request to to merge all parts together.

Let’s see an example. Let’s create an 11 MB file which will then be split into 2 chunks using the linux split command:

$ dd if=/dev/urandom of=my_file.txt bs=1048576 count=11

$ split -b6291456 my_file.txt segment_

Create a new bucket:

$ curl -X POST http://localhost:5000/api/files

Response:

{
"max_file_size":null,
"updated":"2019-05-17T06:52:52.897378+00:00",
"locked":false,
"links":{
"self":"http://localhost:5000/api/files/

c896d17b-0e7d-44b3-beba-7e43b0b1a7a4",
"uploads":"http://localhost:5000/api/files/

c896d17b-0e7d-44b3-beba-7e43b0b1a7a4?uploads",
"versions":"http://localhost:5000/api/files/

c896d17b-0e7d-44b3-beba-7e43b0b1a7a4?versions"
},
"created":"2019-05-17T06:52:52.897373+00:00",
"quota_size":null,
"id":"c896d17b-0e7d-44b3-beba-7e43b0b1a7a4",
"size":0

}

Now, let’s initiate the multipart upload. Notice the URL query argument that specify total size and each part size:

$ B=c896d17b-0e7d-44b3-beba-7e43b0b1a7a4

$ curl -i -X POST \
"http://localhost:5000/api/files/$B/my_file.txt?
uploads&size=11534336&partSize=6291456"

Notice the upload id in the response:

20 Chapter 1. User’s Guide

invenio-files-rest Documentation, Release 1.5.0

{
"updated":"2019-05-17T07:07:22.219002+00:00",
"links":{
"self":"http://localhost:5000/api/files/

c896d17b-0e7d-44b3-beba-7e43b0b1a7a4/my_file.txt?
uploadId=a85b1cbd-4080-4c81-a95c-b4df5d1b615f",

"object":"http://localhost:5000/api/files/
c896d17b-0e7d-44b3-beba-7e43b0b1a7a4/my_file.txt",

"bucket":"http://localhost:5000/api/files/
c896d17b-0e7d-44b3-beba-7e43b0b1a7a4"

},
"last_part_size":5242880,
"created":"2019-05-17T07:07:22.218998+00:00",
"bucket":"c896d17b-0e7d-44b3-beba-7e43b0b1a7a4",
"completed":false,
"part_size":6291456,
"key":"my_file.txt",
"last_part_number":1,
"id":"a85b1cbd-4080-4c81-a95c-b4df5d1b615f",
"size":11534336

}

Now, let’s upload each part in parallel. Notice the uploadId and partNumber URL query arguments:

$ U=a85b1cbd-4080-4c81-a95c-b4df5d1b615f

$ curl -i -X PUT --data-binary @segment_aa \
"http://localhost:5000/api/files/$B/my_file.txt?uploadId=$U&partNumber=0"

$ curl -i -X PUT --data-binary @segment_ab \
"http://localhost:5000/api/files/$B/my_file.txt?uploadId=$U&partNumber=1"

Complete the multipart upload:

$ curl -i -X POST \
"http://localhost:5000/api/files/$B/my_file.txt?uploadId=$U"

You can also abort a multipart upload (and delete all uploaded parts):

$ curl -i -X DELETE \
"http://localhost:5000/api/files/$B/my_file.txt?uploadId=$U"

Multiparts uploads limits can be controlled via configuration variables:

• Set invenio_files_rest.config.FILES_REST_MULTIPART_MAX_PARTS to limit the maximum number of
parts for a single multipart upload.

• Set invenio_files_rest.config.FILES_REST_MULTIPART_CHUNKSIZE_MIN to define the minimum size
of each part.

• Set invenio_files_rest.config.FILES_REST_MULTIPART_CHUNKSIZE_MAX to define the maximum size
of each part.

1.4. Usage 21

invenio-files-rest Documentation, Release 1.5.0

• Set invenio_files_rest.config.FILES_REST_MULTIPART_EXPIRES to define the maximum number of
days for which a multipart upload is considered valid and accepts new part uploads.

1.4.11 Large Files

By default, Flask and your web server have a limit on the maximum size of the upload files. Normally, when the max
size is exceeded, the server will return a response code 413 (Request Entity Too Large).

You can adjust these configurations according to your needs.

For Flask, specify MAX_CONTENT_LENGTH configuration variable. Be aware that if the request does not specify a
CONTENT_LENGTH, no data will be read. To change the max size, you can for example:

$ app.config['MAX_CONTENT_LENGTH'] = 25 * 1024 * 1024

Here is an example for Nginx web server. If you are using another web server, please check the related documentation.

http {
...
client_max_body_size 25M;

}

1.4.12 Data Migration

When you already have an instance running with a certain amount of uploaded data, you might have the need to migrate
the data to a different, larger or more efficient physical location. It can involve your entire set of files or just a part of it.

Note that files migration can be performed with no downtime and in a completely transparent way for the user.

The steps to perform a complete migration are the followings:

1. Create the new Location in the database with the URI of your new location and set it to default = True. In
this way, new Buckets will use the new default location.

2. Change all existing buckets locations in the database to the new one. By doing this, any new file uploaded to the
existing bucket will be stored in the new location.

3. For each FileInstance, run the asynchronous task invenio_files_rest.tasks.migrate_file() passing
the new location.

The asynchronous task invenio_files_rest.tasks.migrate_file() will create a new FileInstance and copy
the file content to the new location. It will then change each ObjectVersion that have a reference to the old
FileInstance to reference the new FileInstance and eventually run an integrity check.

22 Chapter 1. User’s Guide

CHAPTER

TWO

API REFERENCE

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API Docs

Files download/upload REST API similar to S3 for Invenio.

class invenio_files_rest.ext.InvenioFilesREST(app=None)
Invenio-Files-REST extension.

Extension initialization.

init_app(app)
Flask application initialization.

init_config(app)
Initialize configuration.

2.1.1 Models

Models for Invenio-Files-REST.

The entities of this module consists of:

• Buckets - Identified by UUIDs, and contains objects.

• Buckets tags - Identified uniquely with a bucket by a key. Used to store extra metadata for a bucket.

• Objects - Identified uniquely within a bucket by string keys. Each object can have multiple object versions (note:
Objects do not have their own database table).

• Object versions - Identified by UUIDs and belongs to one specific object in one bucket. Each object version has
zero or one file instance. If the object version has no file instance, it is considered a delete marker.

• File instance - Identified by UUIDs. Represents a physical file on disk. The location of the file is specified via
a URI. A file instance can have many object versions.

• Locations - A bucket belongs to a specific location. Locations can be used to represent e.g. different storage
systems.

• Multipart Objects - Identified by UUIDs and belongs to a specific bucket and key.

• Part object - Identified by their multipart object and a part number.

The actual file access is handled by a storage interface. Also, objects do not have their own model, but are represented
via the ObjectVersion model.

23

invenio-files-rest Documentation, Release 1.5.0

class invenio_files_rest.models.Bucket(**kwargs)
Model for storing buckets.

A bucket is a container of objects. Buckets have a default location and storage class. Individual objects in the
bucket can however have different locations and storage classes.

A bucket can be marked as deleted. A bucket can also be marked as locked to prevent operations on the bucket.

Each bucket can also define a quota. The size of a bucket is the size of all objects in the bucket (including all
versions).

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

classmethod all()

Return query of all buckets (excluding deleted).

classmethod create(location=None, storage_class=None, **kwargs)
Create a bucket.

Parameters

• location – Location of a bucket (instance or name). Default: Default location.

• storage_class – Storage class of a bucket. Default: Default storage class.

• **kwargs – Keyword arguments are forwarded to the class

• **kwargs – Keyword arguments are forwarded to the class constructor.

Returns
Created bucket.

created

Creation timestamp.

default_location

Default location.

default_storage_class

Default storage class.

classmethod delete(bucket_id)
Delete a bucket.

Does not actually delete the Bucket, just marks it as deleted.

deleted

Delete state of bucket.

classmethod get(bucket_id)
Get a bucket object (excluding deleted).

Parameters
bucket_id – Bucket identifier.

Returns
Bucket instance.

24 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

get_tags()

Get tags for bucket as dictionary.

id

Bucket identifier.

location

Location associated with this bucket.

locked

Lock state of bucket.

Modifications are not allowed on a locked bucket.

max_file_size

Maximum size of a single file in the bucket.

Usage of this property depends on which file size limiters are installed.

property quota_left

Get how much space is left in the bucket.

quota_size

Quota size of bucket.

Usage of this property depends on which file size limiters are installed.

remove()

Permanently remove a bucket and all objects (including versions).

Warning: This by-passes the normal versioning and should only be used when you want to perma-
nently delete a bucket and its objects. Otherwise use Bucket.delete().

Note the method does not remove the associated file instances which must be garbage collected.

Returns
self.

size

Size of bucket.

This is a computed property which can rebuilt any time from the objects inside the bucket.

property size_limit

Get size limit for this bucket.

The limit is based on the minimum output of the file size limiters.

snapshot(lock=False)
Create a snapshot of latest objects in bucket.

Parameters
lock – Create the new bucket in a locked state.

Returns
Newly created bucket containing copied ObjectVersion.

2.1. API Docs 25

invenio-files-rest Documentation, Release 1.5.0

sync(bucket, delete_extras=False)
Sync self bucket ObjectVersions to the destination bucket.

The bucket is fully mirrored with the destination bucket following the logic:

• same ObjectVersions are not touched

• new ObjectVersions are added to destination

• deleted ObjectVersions are deleted in destination

• extra ObjectVersions in dest are deleted if delete_extras param is True

Parameters

• bucket – The destination bucket.

• delete_extras – Delete extra ObjectVersions in destination if True.

Returns
The bucket with an exact copy of ObjectVersions in self.

updated

Modification timestamp.

validate_storage_class(key, default_storage_class)
Validate storage class.

class invenio_files_rest.models.BucketTag(**kwargs)
Model for storing tags associated to buckets.

This is useful to store extra information for a bucket.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

bucket

Relationship to buckets.

classmethod create(bucket, key, value)
Create a new tag for bucket.

classmethod create_or_update(bucket, key, value)
Create or update a new tag for bucket.

classmethod delete(bucket, key)
Delete a tag.

classmethod get(bucket, key)
Get tag object.

classmethod get_value(bucket, key)
Get tag value.

key

Tag key.

26 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

value

Tag value.

class invenio_files_rest.models.FileInstance(**kwargs)
Model for storing files.

A file instance represents a file on disk. A file instance may be linked from many objects, while an object can
have one and only one file instance.

A file instance also records the storage class, size and checksum of the file on disk.

Additionally, a file instance can be read only in case the storage layer is not capable of writing to the file (e.g.
can typically be used to link to files on externally controlled storage).

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

checksum

String representing the checksum of the object.

clear_last_check()

Clear the checksum of the file.

copy_contents(fileinstance, progress_callback=None, chunk_size=None, **kwargs)
Copy this file instance into another file instance.

classmethod create()

Create a file instance.

Note, object is only added to the database session.

created

Creation timestamp.

delete()

Delete a file instance.

The file instance can be deleted if it has no references from other objects. The caller is responsible to test
if the file instance is writable and that the disk file can actually be removed.

Note: Normally you should use the Celery task to delete a file instance, as this method will not remove
the file on disk.

classmethod get(file_id)
Get a file instance.

classmethod get_by_uri(uri)
Get a file instance by URI.

id

Identifier of file.

init_contents(size=0, **kwargs)
Initialize file.

2.1. API Docs 27

invenio-files-rest Documentation, Release 1.5.0

last_check

Result of last fixity check.

last_check_at

Timestamp of last fixity check.

readable

Defines if the file is read only.

send_file(filename, restricted=True, mimetype=None, trusted=False, chunk_size=None,
as_attachment=False, **kwargs)

Send file to client.

set_contents(stream, chunk_size=None, size=None, size_limit=None, progress_callback=None, **kwargs)
Save contents of stream to this file.

Parameters

• obj – ObjectVersion instance from where this file is accessed from.

• stream – File-like stream.

set_uri(uri, size, checksum, readable=True, writable=False, storage_class=None)
Set a location of a file.

size

Size of file.

storage(**kwargs)
Get storage interface for object.

Uses the applications storage factory to create a storage interface that can be used for this particular file
instance.

Returns
Storage interface.

storage_class

Storage class of file.

update_checksum(progress_callback=None, chunk_size=None, checksum_kwargs=None, **kwargs)
Update checksum based on file.

update_contents(stream, seek=0, size=None, chunk_size=None, progress_callback=None, **kwargs)
Save contents of stream to this file.

Parameters

• obj – ObjectVersion instance from where this file is accessed from.

• stream – File-like stream.

updated

Modification timestamp.

uri

Location of file.

validate_uri(key, uri)
Validate uri.

28 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

verify_checksum(progress_callback=None, chunk_size=None, throws=True, checksum_kwargs=None,
**kwargs)

Verify checksum of file instance.

Parameters

• throws (bool) – If True, exceptions raised during checksum calculation will be re-raised
after logging. If set to False, and an exception occurs, the last_check field is set to None
(last_check_at of course is updated), since no check actually was performed.

• checksum_kwargs (dict) – Passed as **kwargs` to storage().checksum.

writable

Defines if file is writable.

This property is used to create a file instance prior to having the actual file at the given URI. This is useful
when e.g. copying a file instance.

class invenio_files_rest.models.Location(**kwargs)
Model defining base locations.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

classmethod all()

Return query that fetches all locations.

created

Creation timestamp.

default

True if the location is the default location.

At least one location should be the default location.

classmethod get_by_name(name)
Fetch a specific location object.

classmethod get_default()

Fetch the default location object.

id

Internal identifier for locations.

The internal identifier is used only used as foreign key for buckets in order to decrease storage requirements
per row for buckets.

name

External identifier of the location.

updated

Modification timestamp.

uri

URI of the location.

2.1. API Docs 29

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

invenio-files-rest Documentation, Release 1.5.0

validate_name(key, name)
Validate name.

class invenio_files_rest.models.MultipartObject(**kwargs)
Model for storing files in chunks.

A multipart object belongs to a specific bucket and key and is identified by an upload id. You can have multiple
multipart uploads for the same bucket and key. Once all parts of a multipart object is uploaded, the state is
changed to completed. Afterwards it is not possible to upload new parts. Once completed, the multipart object
is merged, and added as a new version in the current object/bucket.

All parts for a multipart upload must be of the same size, except for the last part.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

bucket

Relationship to buckets.

bucket_id

Bucket identifier.

chunk_size

Size of chunks for file.

complete()

Mark a multipart object as complete.

completed

Defines if object is the completed.

classmethod create(bucket, key, size, chunk_size)
Create a new object in a bucket.

created

Creation timestamp.

delete()

Delete a multipart object.

expected_part_size(part_number)
Get expected part size for a particular part number.

file

Relationship to buckets.

file_id

File instance for this multipart object.

classmethod get(bucket, key, upload_id, with_completed=False)
Fetch a specific multipart object.

static is_valid_chunksize(chunk_size)
Check if size is valid.

30 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

static is_valid_size(size, chunk_size)
Validate max theoretical size.

key

Key identifying the object.

property last_part_number

Get last part number.

property last_part_size

Get size of last part.

merge_parts(version_id=None, **kwargs)
Merge parts into object version.

classmethod query_by_bucket(bucket)
Query all uncompleted multipart uploads.

classmethod query_expired(dt, bucket=None)
Query all uncompleted multipart uploads.

size

Size of file.

updated

Modification timestamp.

upload_id

Identifier for the specific version of an object.

validate_key(key, key_)
Validate key.

class invenio_files_rest.models.ObjectVersion(**kwargs)
Model for storing versions of objects.

A bucket stores one or more objects identified by a key. Each object is versioned where each version is represented
by an ObjectVersion.

An object version can either be 1) a normal version which is linked to a file instance, or 2) a delete marker, which
is not linked to a file instance.

An normal object version is linked to a physical file on disk via a file instance. This allows for multiple object
versions to point to the same file on disk, to optimize storage efficiency (e.g. useful for snapshotting an entire
bucket without duplicating the files).

A delete marker object version represents that the object at hand was deleted.

The latest version of an object is marked using the is_head property. If the latest object version is a delete
marker the object will not be shown in the bucket.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

property basename

Return filename of the object.

2.1. API Docs 31

invenio-files-rest Documentation, Release 1.5.0

bucket

Relationship to buckets.

bucket_id

Bucket identifier.

copy(bucket=None, key=None)
Copy an object version to a given bucket + object key.

The copy operation is handled completely at the metadata level. The actual data on disk is not copied.
Instead, the two object versions will point to the same physical file (via the same FileInstance).

All the tags associated with the current object version are copied over to the new instance.

Warning: If the destination object exists, it will be replaced by the new object version which will
become the latest version.

Parameters

• bucket – The bucket (instance or id) to copy the object to. Default: current bucket.

• key – Key name of destination object. Default: current object key.

Returns
The copied object version.

classmethod create(bucket, key, _file_id=None, stream=None, mimetype=None, version_id=None,
**kwargs)

Create a new object in a bucket.

The created object is by default created as a delete marker. You must use set_contents() or
set_location() in order to change this.

Parameters

• bucket – The bucket (instance or id) to create the object in.

• key – Key of object.

• _file_id – For internal use.

• stream – File-like stream object. Used to set content of object immediately after being
created.

• mimetype – MIME type of the file object if it is known.

• kwargs – Keyword arguments passed to Object.set_contents().

created

Creation timestamp.

classmethod delete(bucket, key)
Delete an object.

Technically works by creating a new version which works as a delete marker.

Parameters

• bucket – The bucket (instance or id) to delete the object from.

• key – Key of object.

32 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

Returns
Created delete marker object if key exists else None.

property deleted

Determine if object version is a delete marker.

file

Relationship to file instance.

file_id

File instance for this object version.

A null value in this column defines that the object has been deleted.

classmethod get(bucket, key, version_id=None)
Fetch a specific object.

By default the latest object version is returned, if version_id is not set.

Parameters

• bucket – The bucket (instance or id) to get the object from.

• key – Key of object.

• version_id – Specific version of an object.

classmethod get_by_bucket(bucket, versions=False, with_deleted=False)
Return query that fetches all the objects in a bucket.

Parameters

• bucket – The bucket (instance or id) to query.

• versions – Select all versions if True, only heads otherwise.

• with_deleted – Select also deleted objects if True.

Returns
The query to retrieve filtered objects in the given bucket.

get_tags()

Get tags for object version as dictionary.

classmethod get_versions(bucket, key, desc=True)
Fetch all versions of a specific object.

Parameters

• bucket – The bucket (instance or id) to get the object from.

• key – Key of object.

• desc – Sort results desc if True, asc otherwise.

Returns
The query to execute to fetch all versions.

is_head

Defines if object is the latest version.

classmethod ix_uq_partial_files_object_is_head_dll()

Return DDL instruction for ix_uq_partial_files_object_is_head.

2.1. API Docs 33

invenio-files-rest Documentation, Release 1.5.0

key

Key identifying the object.

mimetype

Get MIME type of object.

classmethod relink_all(old_file, new_file)
Relink all object versions (for a given file) to a new file.

Warning: Use this method with great care.

remove()

Permanently remove a specific object version from the database.

Warning: This by-passes the normal versioning and should only be used when you want to perma-
nently delete a specific object version. Otherwise use ObjectVersion.delete().

Note the method does not remove the associated file instance which must be garbage collected.

Returns
self.

restore()

Restore this object version to become the latest version.

Raises an exception if the object is the latest version.

send_file(restricted=True, trusted=False, **kwargs)
Wrap around FileInstance’s send file.

set_contents(stream, chunk_size=None, size=None, size_limit=None, progress_callback=None)
Save contents of stream to file instance.

If a file instance has already been set, this methods raises an FileInstanceAlreadySetError exception.

Parameters

• stream – File-like stream.

• size – Size of stream if known.

• chunk_size – Desired chunk size to read stream in. It is up to the storage interface if it
respects this value.

set_file(fileinstance)
Set a file instance.

set_location(uri, size, checksum, storage_class=None)
Set only URI location of for object.

Useful to link files on externally controlled storage. If a file instance has already been set, this methods
raises an FileInstanceAlreadySetError exception.

Parameters

• uri – Full URI to object (which can be interpreted by the storage interface).

• size – Size of file.

34 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

• checksum – Checksum of file.

• storage_class – Storage class where file is stored ()

updated

Modification timestamp.

validate_key(key, key_)
Validate key.

version_id

Identifier for the specific version of an object.

class invenio_files_rest.models.ObjectVersionTag(**kwargs)
Model for storing tags associated to object versions.

Used for storing extra technical information for an object version.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

copy(object_version=None, key=None)
Copy a tag to a given object version.

Parameters

• object_version – The object version instance to copy the tag to. Default: current object
version.

• key – Key of destination tag. Default: current tag key.

Returns
The copied object version tag.

classmethod create(object_version, key, value)
Create a new tag for a given object version.

classmethod create_or_update(object_version, key, value)
Create or update a new tag for a given object version.

classmethod delete(object_version, key=None)
Delete tags.

Parameters

• object_version – The object version instance or id.

• key – Key of the tag to delete. Default: delete all tags.

classmethod get(object_version, key)
Get the tag object.

classmethod get_value(object_version, key)
Get the tag value.

key

Tag key.

2.1. API Docs 35

invenio-files-rest Documentation, Release 1.5.0

object_version

Relationship to object versions.

value

Tag value.

version_id

Object version id.

class invenio_files_rest.models.Part(**kwargs)
Part object.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any
mapped columns or relationships.

checksum

String representing the checksum of the part.

classmethod count(mp)
Count number of parts for a given multipart object.

classmethod create(mp, part_number, stream=None, **kwargs)
Create a new part object in a multipart object.

created

Creation timestamp.

classmethod delete(mp, part_number)
Get part number.

property end_byte

Get end byte in file for this part.

classmethod get_or_create(mp, part_number)
Get or create a part.

classmethod get_or_none(mp, part_number)
Get part number.

multipart

Relationship to multipart objects.

part_number

Part number.

property part_size

Get size of this part.

classmethod query_by_multipart(multipart)
Get all parts for a specific multipart upload.

Parameters
multipart – A invenio_files_rest.models.MultipartObject instance.

Returns
A invenio_files_rest.models.Part instance.

36 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

set_contents(stream, progress_callback=None)
Save contents of stream to part of file instance.

If a the MultipartObject is completed this methods raises an MultipartAlreadyCompleted exception.

Parameters

• stream – File-like stream.

• size – Size of stream if known.

• chunk_size – Desired chunk size to read stream in. It is up to the storage interface if it
respects this value.

property start_byte

Get start byte in file of this part.

updated

Modification timestamp.

upload_id

Multipart object identifier.

2.1.2 Storage

File storage interface.

class invenio_files_rest.storage.FileStorage(size=None, modified=None)
Base class for storage interface to a single file.

Initialize storage object.

checksum(chunk_size=None, progress_callback=None, **kwargs)
Compute checksum of file.

copy(src, chunk_size=None, progress_callback=None)
Copy data from another file instance.

Parameters

• src – Source stream.

• chunk_size – Chunk size to read from source stream.

delete()

Delete the file.

initialize(size=0)
Initialize the file on the storage + truncate to the given size.

open(mode=None)
Open the file.

The caller is responsible for closing the file.

save(incoming_stream, size_limit=None, size=None, chunk_size=None, progress_callback=None)
Save incoming stream to file storage.

send_file(filename, mimetype=None, restricted=True, checksum=None, trusted=False, chunk_size=None,
as_attachment=False)

Send the file to the client.

2.1. API Docs 37

invenio-files-rest Documentation, Release 1.5.0

update(incoming_stream, seek=0, size=None, chunk_size=None, progress_callback=None)
Update part of file with incoming stream.

class invenio_files_rest.storage.PyFSFileStorage(fileurl, size=None, modified=None, clean_dir=True)
File system storage using PyFilesystem for access the file.

This storage class will store files according to the following pattern: <base_uri>/<file instance uuid>/
data.

Warning: File operations are not atomic. E.g. if errors happens during e.g. updating part of a file it will
leave the file in an inconsistent state. The storage class tries as best as possible to handle errors and leave the
system in a consistent state.

Storage initialization.

delete()

Delete a file.

The base directory is also removed, as it is assumed that only one file exists in the directory.

initialize(size=0)
Initialize file on storage and truncate to given size.

open(mode='rb')
Open file.

The caller is responsible for closing the file.

save(incoming_stream, size_limit=None, size=None, chunk_size=None, progress_callback=None)
Save file in the file system.

update(incoming_stream, seek=0, size=None, chunk_size=None, progress_callback=None)
Update a file in the file system.

invenio_files_rest.storage.pyfs_storage_factory(fileinstance=None, default_location=None,
default_storage_class=None,
filestorage_class=<class
'invenio_files_rest.storage.pyfs.PyFSFileStorage'>,
fileurl=None, size=None, modified=None,
clean_dir=True)

Get factory function for creating a PyFS file storage instance.

2.1.3 Signals

Models for Invenio-Files-REST.

invenio_files_rest.signals.file_deleted = <blinker.base.NamedSignal object at
0x7f9cdc46d350; 'file-deleted'>

File deleted signal.

Sent when a file is deleted.

invenio_files_rest.signals.file_downloaded = <blinker.base.NamedSignal object at
0x7f9cdc46d190; 'file-downloaded'>

File downloaded signal.

Sent when a file is downloaded.

38 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

invenio_files_rest.signals.file_uploaded = <blinker.base.NamedSignal object at
0x7f9cdc46d310; 'file-uploaded'>

File uploaded signal.

Sent when a file is uploaded.

2.1.4 File streaming

File serving helpers for Files REST API.

invenio_files_rest.helpers.MIMETYPE_WHITELIST = {'audio/mpeg', 'audio/ogg', 'audio/wav',
'audio/webm', 'image/gif', 'image/jpeg', 'image/png', 'image/tiff', 'text/plain'}

List of whitelisted MIME types.

Warning: Do not add new types to this list unless you know what you are doing. You could potentially
open up for XSS attacks.

invenio_files_rest.helpers.chunk_size_or_default(chunk_size)
Use default chunksize if not configured.

invenio_files_rest.helpers.compute_checksum(stream, algo, message_digest, chunk_size=None,
progress_callback=None)

Get helper method to compute checksum from a stream.

Parameters

• stream – File-like object.

• algo – Identifier for checksum algorithm.

• messsage_digest – A message digest instance.

• chunk_size – Read at most size bytes from the file at a time.

• progress_callback – Function accepting one argument with number of bytes read. (De-
fault: None)

Returns
The checksum.

invenio_files_rest.helpers.compute_md5_checksum(stream, **kwargs)
Get helper method to compute MD5 checksum from a stream.

Parameters
stream – The input stream.

Returns
The MD5 checksum.

invenio_files_rest.helpers.create_file_streaming_redirect_response(obj)
Redirect response generating function.

invenio_files_rest.helpers.make_path(base_uri, path, filename, path_dimensions, split_length)
Generate a path as base location for file instance.

Parameters

• base_uri – The base URI.

2.1. API Docs 39

invenio-files-rest Documentation, Release 1.5.0

• path – The relative path.

• path_dimensions – Number of chunks the path should be split into.

• split_length – The length of any chunk.

Returns
A string representing the full path.

invenio_files_rest.helpers.populate_from_path(bucket, source, checksum=True, key_prefix='',
chunk_size=None)

Populate a bucket from all files in path.

Parameters

• bucket – The bucket (instance or id) to create the object in.

• source – The file or directory path.

• checksum – If True then a MD5 checksum will be computed for each file. (Default: True)

• key_prefix – The key prefix for the bucket.

• chunk_size – Chunk size to read from file.

Returns
A iterator for all invenio_files_rest.models.ObjectVersion instances.

invenio_files_rest.helpers.sanitize_mimetype(mimetype, filename=None)
Sanitize a MIME type so the browser does not render the file.

invenio_files_rest.helpers.send_stream(stream, filename, size, mtime, mimetype=None, restricted=True,
as_attachment=False, etag=None, content_md5=None,
chunk_size=None, conditional=True, trusted=False)

Send the contents of a file to the client.

Warning: It is very easy to be exposed to Cross-Site Scripting (XSS) attacks if you serve user uploaded
files. Here are some recommendations:

1. Serve user uploaded files from a separate domain (not a subdomain). This way a malicious file can
only attack other user uploaded files.

2. Prevent the browser from rendering and executing HTML files (by setting trusted=False).

3. Force the browser to download the file as an attachment (as_attachment=True).

Parameters

• stream – The file stream to send.

• filename – The file name.

• size – The file size.

• mtime – A Unix timestamp that represents last modified time (UTC).

• mimetype – The file mimetype. If None, the module will try to guess. (Default: None)

• restricted – If the file is not restricted, the module will set the cache-control. (Default:
True)

• as_attachment – If the file is an attachment. (Default: False)

• etag – If defined, it will be set as HTTP E-Tag.

40 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

• content_md5 – If defined, a HTTP Content-MD5 header will be set.

• chunk_size – The chunk size.

• conditional – Make the response conditional to the request. (Default: True)

• trusted – Do not enable this option unless you know what you are doing. By default this
function will send HTTP headers and MIME types that prevents your browser from rendering
e.g. a HTML file which could contain a malicious script tag. (Default: False)

Returns
A Flask response instance.

2.1.5 Tasks

Celery tasks for Invenio-Files-REST.

invenio_files_rest.tasks.clear_orphaned_files(force_delete_check=<function <lambda> at
0x7f9cdc3f7f80>, limit=1000)

Delete orphaned files from DB and storage.

Note: Orphan files are files (invenio_files_rest.models.FileInstance objects and their on-disk coun-
terparts) that do not have any invenio_files_rest.models.ObjectVersion objects associated with them
(anymore).

The celery beat configuration for scheduling this task may set values for this task’s parameters:

"clear-orphan-files": {
"task": "invenio_files_rest.tasks.clear_orphaned_files",
"schedule": 60 * 60 * 24,
"kwargs": {

"force_delete_check": lambda file: False,
"limit": 500,

}
}

Parameters

• force_delete_check – A function to be called on each orphan file instance to check if
its deletion should be forced (bypass the check of its writable flag). For example, this
function can be used to force-delete files only if they are located on the local file system.
Signature: The function should accept a invenio_files_rest.models.FileInstance
object and return a boolean value. Default: Never force-delete any orphan files (lambda
file_instance: False).

• limit – Limit for the number of orphan files considered for deletion in each task execution
(and thus the number of generated celery tasks). A value of zero (0) or lower disables the
limit.

invenio_files_rest.tasks.default_checksum_verification_files_query()

Return a query of valid FileInstances for checksum verification.

invenio_files_rest.tasks.merge_multipartobject(upload_id, version_id=None)
Merge multipart object.

Parameters

2.1. API Docs 41

invenio-files-rest Documentation, Release 1.5.0

• upload_id – The invenio_files_rest.models.MultipartObject upload ID.

• version_id – Optionally you can define which file version. (Default: None)

Returns
The invenio_files_rest.models.ObjectVersion version ID.

invenio_files_rest.tasks.migrate_file(src_id, location_name, post_fixity_check=False)
Task to migrate a file instance to a new location.

Note: If something goes wrong during the content copy, the destination file instance is removed.

Parameters

• src_id – The invenio_files_rest.models.FileInstance ID.

• location_name – Where to migrate the file.

• post_fixity_check – Verify checksum after migration. (Default: False)

invenio_files_rest.tasks.progress_updater(size, total)
Progress reporter for checksum verification.

invenio_files_rest.tasks.remove_expired_multipartobjects()

Remove expired multipart objects.

invenio_files_rest.tasks.remove_file_data(file_id, silent=True, force=False)
Remove file instance and associated data.

Parameters

• file_id – The invenio_files_rest.models.FileInstance ID.

• silent – It stops propagation of a possible raised IntegrityError exception. (Default: True)

• force – Whether to delete the file even if the file instance is not marked as writable.

Raises
sqlalchemy.exc.IntegrityError – Raised if the database removal goes wrong and silent is
set to False.

invenio_files_rest.tasks.schedule_checksum_verification(frequency=None, batch_interval=None,
max_count=None, max_size=None,
files_query=None,
checksum_kwargs=None)

Schedule a batch of files for checksum verification.

The purpose of this task is to be periodically called through celerybeat, in order achieve a repeated verification
cycle of all file checksums, while following a set of constraints in order to throttle the execution rate of the checks.

Parameters

• frequency (dict) – Time period over which a full check of all files should be performed.
The argument is a dictionary that will be passed as arguments to the datetime.timedelta class.
Defaults to a month (30 days).

• batch_interval (dict) – How often a batch is sent. If not supplied, this information will
be extracted, if possible, from the celery.conf[‘CELERYBEAT_SCHEDULE’] entry of this
task. The argument is a dictionary that will be passed as arguments to the datetime.timedelta
class.

42 Chapter 2. API Reference

https://docs.sqlalchemy.org/en/20/core/exceptions.html#sqlalchemy.exc.IntegrityError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

invenio-files-rest Documentation, Release 1.5.0

• max_count (int) – Max count of files of a single batch. When set to 0 it’s automatically
calculated to be distributed equally through the number of total batches.

• max_size (int) – Max size of a single batch in bytes. When set to 0 it’s automatically
calculated to be distributed equally through the number of total batches.

• files_query (str) – Import path for a function returning a FileInstance query for files that
should be checked.

• checksum_kwargs (dict) – Passed to FileInstance.verify_checksum.

invenio_files_rest.tasks.verify_checksum(file_id, pessimistic=False, chunk_size=None, throws=True,
checksum_kwargs=None)

Verify checksum of a file instance.

Parameters
file_id – The file ID.

2.1.6 Exceptions

Errors for Invenio-Files-REST.

exception invenio_files_rest.errors.BucketLockedError(errors=None, **kwargs)
Exception raised when a bucket is locked.

Initialize RESTException.

exception invenio_files_rest.errors.DuplicateTagError(errors=None, **kwargs)
Invalid tag key and/or value.

Initialize RESTException.

exception invenio_files_rest.errors.ExhaustedStreamError(errors=None, **kwargs)
The incoming file stream has been already consumed.

Initialize RESTException.

exception invenio_files_rest.errors.FileInstanceAlreadySetError(errors=None, **kwargs)
Exception raised when file instance already set on object.

Initialize RESTException.

exception invenio_files_rest.errors.FileInstanceUnreadableError(errors=None, **kwargs)
Exception raised when trying to get an unreadable file.

Initialize RESTException.

exception invenio_files_rest.errors.FileSizeError(errors=None, **kwargs)
Exception raised when a file larger than allowed.

Initialize RESTException.

exception invenio_files_rest.errors.FilesException(errors=None, **kwargs)
Base exception for all errors.

Initialize RESTException.

exception invenio_files_rest.errors.InvalidKeyError(errors=None, **kwargs)
Invalid key.

Initialize RESTException.

2.1. API Docs 43

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

invenio-files-rest Documentation, Release 1.5.0

exception invenio_files_rest.errors.InvalidOperationError(errors=None, **kwargs)
Exception raised when an invalid operation is performed.

Initialize RESTException.

exception invenio_files_rest.errors.InvalidTagError(errors=None, **kwargs)
Invalid tag key and/or value.

Initialize RESTException.

exception invenio_files_rest.errors.MissingQueryParameter(arg_name, **kwargs)
Exception raised when missing a query parameter.

Initialize RESTException.

get_description(environ=None)
Get the description.

exception invenio_files_rest.errors.MultipartAlreadyCompleted(errors=None, **kwargs)
Exception raised when multipart object is already completed.

Initialize RESTException.

exception invenio_files_rest.errors.MultipartException(errors=None, **kwargs)
Exception for multipart objects.

Initialize RESTException.

exception invenio_files_rest.errors.MultipartInvalidChunkSize(errors=None, **kwargs)
Exception raised when multipart object is already completed.

Initialize RESTException.

exception invenio_files_rest.errors.MultipartInvalidPartNumber(errors=None, **kwargs)
Exception raised when multipart object is already completed.

Initialize RESTException.

exception invenio_files_rest.errors.MultipartInvalidSize(errors=None, **kwargs)
Exception raised when multipart object is already completed.

Initialize RESTException.

exception invenio_files_rest.errors.MultipartMissingParts(errors=None, **kwargs)
Exception raised when multipart object is already completed.

Initialize RESTException.

exception invenio_files_rest.errors.MultipartNoPart(errors=None, **kwargs)
Exception raised by part factories when no part was detected.

Initialize RESTException.

exception invenio_files_rest.errors.MultipartNotCompleted(errors=None, **kwargs)
Exception raised when multipart object is not already completed.

Initialize RESTException.

exception invenio_files_rest.errors.StorageError(errors=None, **kwargs)
Exception raised when a storage operation fails.

Initialize RESTException.

44 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

get_errors()

Get errors.

Returns
A string with the error message.

exception invenio_files_rest.errors.UnexpectedFileSizeError(errors=None, **kwargs)
Exception raised when a file does not match its expected size.

Initialize RESTException.

2.1.7 Limiters

File size limiting functionality for Invenio-Files-REST.

class invenio_files_rest.limiters.FileSizeLimit(limit, reason)
File size limiter.

Instantiate a new file size limit.

Parameters

• limit – The imposed imposed limit.

• reason – The limit description.

invenio_files_rest.limiters.file_size_limiters(bucket)
Get default file size limiters.

Parameters
bucket – The invenio_files_rest.models.Bucket instance.

Returns
A list containing an instance of invenio_files_rest.limiters.FileSizeLimit with quota
left value and description and another one with max file size value and description.

2.1.8 Permissions

Permissions for files using Invenio-Access.

invenio_files_rest.permissions.BucketListMultiparts =
functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'),
'files-rest-bucket-listmultiparts')

Action needed: list multipart uploads in bucket.

invenio_files_rest.permissions.BucketRead = functools.partial(functools.partial(<class
'invenio_access.permissions.Need'>, 'action'), 'files-rest-bucket-read')

Action needed: list objects in bucket.

invenio_files_rest.permissions.BucketReadVersions =
functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'),
'files-rest-bucket-read-versions')

Action needed: list object versions in bucket.

invenio_files_rest.permissions.BucketUpdate = functools.partial(functools.partial(<class
'invenio_access.permissions.Need'>, 'action'), 'files-rest-bucket-update')

Action needed: create objects and multipart uploads in bucket.

2.1. API Docs 45

invenio-files-rest Documentation, Release 1.5.0

invenio_files_rest.permissions.LocationUpdate =
functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'),
'files-rest-location-update')

Action needed: location update.

invenio_files_rest.permissions.MultipartDelete =
functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'),
'files-rest-multipart-delete')

Action needed: abort a multipart upload.

invenio_files_rest.permissions.MultipartRead = functools.partial(functools.partial(<class
'invenio_access.permissions.Need'>, 'action'), 'files-rest-multipart-read')

Action needed: list parts of a multipart upload in a bucket.

invenio_files_rest.permissions.ObjectDelete = functools.partial(functools.partial(<class
'invenio_access.permissions.Need'>, 'action'), 'files-rest-object-delete')

Action needed: delete object in bucket.

invenio_files_rest.permissions.ObjectDeleteVersion =
functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'),
'files-rest-object-delete-version')

Action needed: permanently delete specific object version in bucket.

invenio_files_rest.permissions.ObjectRead = functools.partial(functools.partial(<class
'invenio_access.permissions.Need'>, 'action'), 'files-rest-object-read')

Action needed: get object in bucket.

invenio_files_rest.permissions.ObjectReadVersion =
functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'),
'files-rest-object-read-version')

Action needed: get object version in bucket.

invenio_files_rest.permissions.bucket_listmultiparts_all = Need(method='action',
value='files-rest-bucket-listmultiparts', argument=None)

Action needed: list all buckets multiparts.

invenio_files_rest.permissions.bucket_read_all = Need(method='action',
value='files-rest-bucket-read', argument=None)

Action needed: read all buckets.

invenio_files_rest.permissions.bucket_read_versions_all = Need(method='action',
value='files-rest-bucket-read-versions', argument=None)

Action needed: read all buckets versions.

invenio_files_rest.permissions.bucket_update_all = Need(method='action',
value='files-rest-bucket-update', argument=None)

Action needed: update all buckets

invenio_files_rest.permissions.location_update_all = Need(method='action',
value='files-rest-location-update', argument=None)

Action needed: update all locations.

invenio_files_rest.permissions.multipart_delete_all = Need(method='action',
value='files-rest-multipart-delete', argument=None)

Action needed: delete all multiparts.

46 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

invenio_files_rest.permissions.multipart_read_all = Need(method='action',
value='files-rest-multipart-read', argument=None)

Action needed: read all multiparts.

invenio_files_rest.permissions.object_delete_all = Need(method='action',
value='files-rest-object-delete', argument=None)

Action needed: delete all objects.

invenio_files_rest.permissions.object_delete_version_all = Need(method='action',
value='files-rest-object-delete-version', argument=None)

Action needed: delete all objects versions.

invenio_files_rest.permissions.object_read_all = Need(method='action',
value='files-rest-object-read', argument=None)

Action needed: read all objects.

invenio_files_rest.permissions.object_read_version_all = Need(method='action',
value='files-rest-object-read-version', argument=None)

Action needed: read all objects versions.

invenio_files_rest.permissions.permission_factory(obj, action)
Get default permission factory.

Parameters

• obj – An instance of invenio_files_rest.models.Bucket or invenio_files_rest.
models.ObjectVersion or invenio_files_rest.models.MultipartObject or
None if the action is global.

• action – The required action.

Raises
RuntimeError – If the object is unknown.

Returns
A invenio_access.permissions.Permission instance.

2.1.9 Views

Files download/upload REST API similar to S3 for Invenio.

class invenio_files_rest.views.BucketResource(*args, **kwargs)
Bucket item resource.

Instantiate content negotiated view.

get(bucket=None, versions=<marshmallow.missing>, uploads=<marshmallow.missing>)
Get list of objects in the bucket.

Parameters
bucket – A invenio_files_rest.models.Bucket instance.

Returns
The Flask response.

head(bucket=None, **kwargs)
Check the existence of the bucket.

2.1. API Docs 47

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://invenio-access.readthedocs.io/en/latest/api.html#invenio_access.permissions.Permission

invenio-files-rest Documentation, Release 1.5.0

listobjects(bucket, versions)
List objects in a bucket.

Parameters
bucket – A invenio_files_rest.models.Bucket instance.

Returns
The Flask response.

methods: ClassVar[Optional[Collection[str]]] = {'GET', 'HEAD'}

The methods this view is registered for. Uses the same default (["GET", "HEAD", "OPTIONS"]) as
route and add_url_rule by default.

multipart_listuploads(bucket)
List objects in a bucket.

Parameters
bucket – A invenio_files_rest.models.Bucket instance.

Returns
The Flask response.

class invenio_files_rest.views.LocationResource(*args, **kwargs)
Service resource.

Instantiate content negotiated view.

methods: ClassVar[Optional[Collection[str]]] = {'POST'}

The methods this view is registered for. Uses the same default (["GET", "HEAD", "OPTIONS"]) as
route and add_url_rule by default.

post()

Create bucket.

class invenio_files_rest.views.ObjectResource(*args, **kwargs)
Object item resource.

Instantiate content negotiated view.

static check_object_permission(obj)
Retrieve object and abort if it doesn’t exists.

create_object(bucket, key)
Create a new object.

Parameters

• bucket – The bucket (instance or id) to get the object from.

• key – The file key.

Returns
A Flask response.

delete(bucket=None, key=None, version_id=None, upload_id=None, uploads=None)
Delete an object or abort a multipart upload.

Parameters

• bucket – The bucket (instance or id) to get the object from. (Default: None)

• key – The file key. (Default: None)

48 Chapter 2. API Reference

https://docs.python.org/3/library/typing.html#typing.ClassVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.ClassVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str

invenio-files-rest Documentation, Release 1.5.0

• version_id – The version ID. (Default: None)

• upload_id – The upload ID. (Default: None)

Returns
A Flask response.

delete_object(bucket, obj, version_id)
Delete an existing object.

Parameters

• bucket – The bucket (instance or id) to get the object from.

• obj – A invenio_files_rest.models.ObjectVersion instance.

• version_id – The version ID.

Returns
A Flask response.

get(bucket=None, key=None, version_id=None, upload_id=None, uploads=None, download=None)
Get object or list parts of a multipart upload.

Parameters

• bucket – The bucket (instance or id) to get the object from. (Default: None)

• key – The file key. (Default: None)

• version_id – The version ID. (Default: None)

• upload_id – The upload ID. (Default: None)

• download – The download flag. (Default: None)

Returns
A Flask response.

classmethod get_object(bucket, key, version_id)
Retrieve object and abort if it doesn’t exist.

If the file is not found, the connection is aborted and the 404 error is returned.

Parameters

• bucket – The bucket (instance or id) to get the object from.

• key – The file key.

• version_id – The version ID.

Returns
A invenio_files_rest.models.ObjectVersion instance.

methods: ClassVar[Optional[Collection[str]]] = {'DELETE', 'GET', 'POST', 'PUT'}

The methods this view is registered for. Uses the same default (["GET", "HEAD", "OPTIONS"]) as
route and add_url_rule by default.

multipart_complete(multipart)
Complete a multipart upload.

Parameters
multipart – A invenio_files_rest.models.MultipartObject instance.

2.1. API Docs 49

https://docs.python.org/3/library/typing.html#typing.ClassVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str

invenio-files-rest Documentation, Release 1.5.0

Returns
A Flask response.

multipart_delete(multipart)
Abort a multipart upload.

Parameters
multipart – A invenio_files_rest.models.MultipartObject instance.

Returns
A Flask response.

multipart_init(bucket, key, size=None, part_size=None)
Initialize a multipart upload.

Parameters

• bucket – The bucket (instance or id) to get the object from.

• key – The file key.

• size – The total size.

• part_size – The part size.

Raises
invenio_files_rest.errors.MissingQueryParameter – If size or part_size are not
defined.

Returns
A Flask response.

multipart_listparts(multipart)
Get parts of a multipart upload.

Parameters
multipart – A invenio_files_rest.models.MultipartObject instance.

Returns
A Flask response.

multipart_uploadpart(multipart)
Upload a part.

Parameters
multipart – A invenio_files_rest.models.MultipartObject instance.

Returns
A Flask response.

post(bucket=None, key=None, uploads=<marshmallow.missing>, upload_id=None)
Upload a new object or start/complete a multipart upload.

Parameters

• bucket – The bucket (instance or id) to get the object from. (Default: None)

• key – The file key. (Default: None)

• upload_id – The upload ID. (Default: None)

Returns
A Flask response.

50 Chapter 2. API Reference

invenio-files-rest Documentation, Release 1.5.0

put(bucket=None, key=None, upload_id=None)
Update a new object or upload a part of a multipart upload.

Parameters

• bucket – The bucket (instance or id) to get the object from. (Default: None)

• key – The file key. (Default: None)

• upload_id – The upload ID. (Default: None)

Returns
A Flask response.

static send_object(bucket, obj, expected_chksum=None, logger_data=None, restricted=True,
as_attachment=False)

Send an object for a given bucket.

Parameters

• bucket – The bucket (instance or id) to get the object from.

• obj – A invenio_files_rest.models.ObjectVersion instance.

• logger_data – The python logger.

• kwargs – Keyword arguments passed to Object.send_file()

Params expected_chksum
Expected checksum.

Returns
A Flask response.

invenio_files_rest.views.as_uuid(value)
Convert value to UUID.

invenio_files_rest.views.bucket_view(**kwargs)
Bucket item resource.

Parameters
kwargs (Any) –

Return type
Union[Response, str, bytes, List[Any], Mapping[str, Any], Iterator[str], Iterator[bytes], Tu-
ple[Union[Response, str, bytes, List[Any], Mapping[str, Any], Iterator[str], Iterator[bytes]],
Union[Headers, Mapping[str, Union[str, List[str], Tuple[str, . . .]]], Sequence[Tuple[str,
Union[str, List[str], Tuple[str, . . .]]]]]], Tuple[Union[Response, str, bytes, List[Any], Map-
ping[str, Any], Iterator[str], Iterator[bytes]], int], Tuple[Union[Response, str, bytes, List[Any],
Mapping[str, Any], Iterator[str], Iterator[bytes]], int, Union[Headers, Mapping[str, Union[str,
List[str], Tuple[str, . . .]]], Sequence[Tuple[str, Union[str, List[str], Tuple[str, . . .]]]]]], WSGIAp-
plication]

invenio_files_rest.views.check_permission(permission, hidden=True)
Check if permission is allowed.

If permission fails then the connection is aborted.

Parameters

• permission – The permission to check.

• hidden – Determine if a 404 error (True) or 401/403 error (False) should be returned if
the permission is rejected (i.e. hide or reveal the existence of a particular object).

2.1. API Docs 51

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str

invenio-files-rest Documentation, Release 1.5.0

invenio_files_rest.views.default_partfactory(part_number=None, content_length=None,
content_type=None, content_md5=None)

Get default part factory.

Parameters

• part_number – The part number. (Default: None)

• content_length – The content length. (Default: None)

• content_type – The HTTP Content-Type. (Default: None)

• content_md5 – The content MD5. (Default: None)

Returns
The content length, the part number, the stream, the content type, MD5 of the content.

invenio_files_rest.views.ensure_input_stream_is_not_exhausted(f)
Make sure that the input stream has not been read already.

invenio_files_rest.views.invalid_subresource_validator(value)
Ensure subresource.

invenio_files_rest.views.location_view(**kwargs)
Service resource.

Parameters
kwargs (Any) –

Return type
Union[Response, str, bytes, List[Any], Mapping[str, Any], Iterator[str], Iterator[bytes], Tu-
ple[Union[Response, str, bytes, List[Any], Mapping[str, Any], Iterator[str], Iterator[bytes]],
Union[Headers, Mapping[str, Union[str, List[str], Tuple[str, . . .]]], Sequence[Tuple[str,
Union[str, List[str], Tuple[str, . . .]]]]]], Tuple[Union[Response, str, bytes, List[Any], Map-
ping[str, Any], Iterator[str], Iterator[bytes]], int], Tuple[Union[Response, str, bytes, List[Any],
Mapping[str, Any], Iterator[str], Iterator[bytes]], int, Union[Headers, Mapping[str, Union[str,
List[str], Tuple[str, . . .]]], Sequence[Tuple[str, Union[str, List[str], Tuple[str, . . .]]]]]], WSGIAp-
plication]

invenio_files_rest.views.minsize_validator(value)
Validate Content-Length header.

Raises
invenio_files_rest.errors.FileSizeError – If the value is less than
invenio_files_rest.config.FILES_REST_MIN_FILE_SIZE size.

invenio_files_rest.views.need_bucket_permission(action, hidden=True)
Get permission for buckets or abort.

Parameters

• object_getter – The function used to retrieve the object and pass it to the permission
factory.

• action – The action needed.

• hidden – Determine which kind of error to return. (Default: True)

invenio_files_rest.views.need_location_permission(action, hidden=True)
Get permission for buckets or abort.

Parameters

52 Chapter 2. API Reference

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str

invenio-files-rest Documentation, Release 1.5.0

• object_getter – The function used to retrieve the object and pass it to the permission
factory.

• action – The action needed.

• hidden – Determine which kind of error to return. (Default: True)

invenio_files_rest.views.need_permissions(object_getter, action, hidden=True)
Get permission for buckets or abort.

Parameters

• object_getter – The function used to retrieve the object and pass it to the permission
factory.

• action – The action needed.

• hidden – Determine which kind of error to return. (Default: True)

invenio_files_rest.views.ngfileupload_partfactory(part_number=None, content_length=None,
uploaded_file=None)

Part factory for ng-file-upload.

Parameters

• part_number – The part number. (Default: None)

• content_length – The content length. (Default: None)

• uploaded_file – The upload request. (Default: None)

Returns
The content length, part number, stream, HTTP Content-Type header.

invenio_files_rest.views.ngfileupload_uploadfactory(content_length=None, content_type=None,
uploaded_file=None)

Get default put factory.

If Content-Type is 'multipart/form-data' then the stream is aborted.

Parameters

• content_length – The content length. (Default: None)

• content_type – The HTTP Content-Type. (Default: None)

• uploaded_file – The upload request. (Default: None)

• file_tags_header – The file tags. (Default: None)

Returns
A tuple containing stream, content length, and empty header.

invenio_files_rest.views.object_view(**kwargs)
Object item resource.

Parameters
kwargs (Any) –

Return type
Union[Response, str, bytes, List[Any], Mapping[str, Any], Iterator[str], Iterator[bytes], Tu-
ple[Union[Response, str, bytes, List[Any], Mapping[str, Any], Iterator[str], Iterator[bytes]],
Union[Headers, Mapping[str, Union[str, List[str], Tuple[str, . . .]]], Sequence[Tuple[str,
Union[str, List[str], Tuple[str, . . .]]]]]], Tuple[Union[Response, str, bytes, List[Any], Map-
ping[str, Any], Iterator[str], Iterator[bytes]], int], Tuple[Union[Response, str, bytes, List[Any],

2.1. API Docs 53

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any

invenio-files-rest Documentation, Release 1.5.0

Mapping[str, Any], Iterator[str], Iterator[bytes]], int, Union[Headers, Mapping[str, Union[str,
List[str], Tuple[str, . . .]]], Sequence[Tuple[str, Union[str, List[str], Tuple[str, . . .]]]]]], WSGIAp-
plication]

invenio_files_rest.views.parse_header_tags()

Parse tags specified in the HTTP request header.

invenio_files_rest.views.pass_bucket(f)
Decorate to retrieve a bucket.

invenio_files_rest.views.pass_multipart(with_completed=False)
Decorate to retrieve an object.

invenio_files_rest.views.stream_uploadfactory(content_md5=None, content_length=None,
content_type=None)

Get default put factory.

If Content-Type is 'multipart/form-data' then the stream is aborted.

Parameters

• content_md5 – The content MD5. (Default: None)

• content_length – The content length. (Default: None)

• content_type – The HTTP Content-Type. (Default: None)

Returns
The stream, content length, MD5 of the content.

invenio_files_rest.views.validate_tag(key, value)
Validate a tag.

Keys must be less than 128 chars and values must be less than 256 chars.

2.1.10 Form parser

Werkzeug form data parser customization.

class invenio_files_rest.formparser.FormDataParser(stream_factory=None, charset='utf-8',
errors='replace', max_form_memory_size=None,
max_content_length=None, cls=None,
silent=True, *, max_form_parts=None)

Custom form data parser.

Parameters

• stream_factory (Optional[TStreamFactory]) –

• charset (str) –

• errors (str) –

• max_form_memory_size (Optional[int]) –

• max_content_length (Optional[int]) –

• cls (Optional[Type[MultiDict]]) –

• silent (bool) –

• max_form_parts (Optional[int]) –

54 Chapter 2. API Reference

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://werkzeug.palletsprojects.com/en/2.3.x/datastructures/#werkzeug.datastructures.MultiDict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

invenio-files-rest Documentation, Release 1.5.0

parse(stream, mimetype, content_length, options=None)
Parse the information from the given request.

Parameters

• stream – An input stream.

• mimetype – The mimetype of the data.

• content_length – The content length of the incoming data.

• options – Optional mimetype parameters (used for the multipart boundary for instance).

Returns
A tuple in the form (stream, form, files).

2.1. API Docs 55

invenio-files-rest Documentation, Release 1.5.0

56 Chapter 2. API Reference

CHAPTER

THREE

ADDITIONAL NOTES

Notes on how to contribute, legal information and changes are here for the interested.

3.1 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

3.1.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/invenio-files-rest/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

57

https://github.com/inveniosoftware/invenio-files-rest/issues

invenio-files-rest Documentation, Release 1.5.0

Write Documentation

Invenio-Files-REST could always use more documentation, whether as part of the official Invenio-Files-REST docs, in
docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/inveniosoftware/invenio-files-rest/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

3.1.2 Get Started!

Ready to contribute? Here’s how to set up invenio for local development.

1. Fork the invenio repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:inveniosoftware/invenio-files-rest.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv invenio-files-rest
$ cd invenio-files-rest/
$ pip install -e .[all]

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass tests:

$./run-tests.sh

The tests will provide you with test coverage and also check PEP8 (code style), PEP257 (documentation), flake8
as well as build the Sphinx documentation and run doctests.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

58 Chapter 3. Additional Notes

https://github.com/inveniosoftware/invenio-files-rest/issues

invenio-files-rest Documentation, Release 1.5.0

3.1.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests and must not decrease test coverage.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring.

3. The pull request should work for Python 3.6, 3.7, 3.8 and 3.9. Check https://github.com/inveniosoftware/
invenio-files-rest/actions?query=event%3Apull_request and make sure that the tests pass for all supported
Python versions.

3.2 Changes

Version 1.5.0 (release 2023-03-02)

• remove deprecated flask-babelex dependency and imports

• install invenio-i18n

Version 1.4.0 (release 2023-01-24)

• tasks: add orphan cleaning celery task

Version 1.3.3 (release 2022-04-06)

• Fix Flask v2.1 issues.

• Refactor dependencies to respect Invenio dependency strategy and remove pin on Flask-Login.

Version 1.3.2 (release 2022-02-14)

• Fix deprecation warnings from marshmallow.

Version 1.3.1 (release 2022-01-31)

• Fix a race-condition by enforcing integrity constraint on is head. An issue was detected that could produce two
head versions of the same object. This fix adds a partial index in PostgreSQL to ensure that the race condition
throws an integrity error when trying to commit. Partial indexes is only available on PostgreSQL.

• Fix for the sync method and signals signature.

Version 1.3.0 (released 2021-10-18)

• Bumped minimum PyFilesystem dependency to v2. Note that, setuptools v58+ have dropped support for use2to3,
thus PyFilesystem v0.5.5 no longer installs on Python 3 when using setuptools v58 or greater.

Version 1.2.0 (released 2020-05-14)

• Adds optional file streaming using a reverse proxy (e.g. NGINX).

Version 1.1.1 (released 2020-02-24)

• Makes cli location command backwards compatible.

Version 1.1.0 (released 2020-01-19)

• Moves location from command to group

• Allows listing locations via de CLI

• Allows setting a location as default

• Get by name on the Location object returns None when not found instead of raising an exception

3.2. Changes 59

https://github.com/inveniosoftware/invenio-files-rest/actions?query=event%3Apull_request
https://github.com/inveniosoftware/invenio-files-rest/actions?query=event%3Apull_request

invenio-files-rest Documentation, Release 1.5.0

• Other bug fixes

Version 1.0.6 (released 2019-11-22)

• Bump version and add to installation requirements invenio-celery

• Add documentation of module usage

• Remove storage_class parameter from Bucket create when POST to Location resource

Version 1.0.5 (released 2019-11-21)

• Add signals for deletion and upload of files

Version 1.0.4 (released 2019-11-20)

• Fix StorageError type returned

Version 1.0.3 (released 2019-11-15)

• Increase invenio-rest version to support Marshmallow 2 and 3 migration

Version 1.0.2 (released 2019-11-14)

• Adds optional serializer_mapping and view_name in json_serializer method

Version 1.0.1 (released 2019-08-01)

• Adds support for marshmallow 2 and 3.

Version 1.0.0 (released 2019-07-22)

• Initial public release.

3.3 License

MIT License

Copyright (C) 2015-2019 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note: In applying this license, CERN does not waive the privileges and immunities granted to it by virtue of its status
as an Intergovernmental Organization or submit itself to any jurisdiction.

60 Chapter 3. Additional Notes

invenio-files-rest Documentation, Release 1.5.0

3.4 Contributors

• Alexander Ioannidis

• Alizee Pace

• Chiara Bigarella

• David Zerulla

• Emanuel Dima

• Esteban J. G. Gabancho

• Harris Tzovanakis

• Ioan Ungurean

• Jacopo Notarstefano

• Javier Delgado

• Javier Martin Montull

• Jiri Kuncar

• Jose Benito Gonzalez Lopez

• Krzysztof Nowak

• Lars Holm Nielsen

• Leonardo Rossi

• Nicola Tarocco

• Nicolas Harraudeau

• Niklas Persson

• Nikos Filippakis

• Sami Hiltunen

• Samuele Kaplun

• Sebastian Witowski

• Spiros Delviniotis

• Steven Loria

• Tibor Simko

3.4. Contributors 61

invenio-files-rest Documentation, Release 1.5.0

62 Chapter 3. Additional Notes

PYTHON MODULE INDEX

i
invenio_files_rest, 8
invenio_files_rest.config, 6
invenio_files_rest.errors, 43
invenio_files_rest.ext, 23
invenio_files_rest.formparser, 54
invenio_files_rest.helpers, 39
invenio_files_rest.limiters, 45
invenio_files_rest.models, 23
invenio_files_rest.permissions, 45
invenio_files_rest.signals, 38
invenio_files_rest.storage, 37
invenio_files_rest.tasks, 41
invenio_files_rest.views, 47

63

invenio-files-rest Documentation, Release 1.5.0

64 Python Module Index

INDEX

A
all() (invenio_files_rest.models.Bucket class method),

24
all() (invenio_files_rest.models.Location class method),

29
as_uuid() (in module invenio_files_rest.views), 51

B
basename (invenio_files_rest.models.ObjectVersion

property), 31
Bucket (class in invenio_files_rest.models), 23
bucket (invenio_files_rest.models.BucketTag attribute),

26
bucket (invenio_files_rest.models.MultipartObject at-

tribute), 30
bucket (invenio_files_rest.models.ObjectVersion at-

tribute), 31
bucket_id (invenio_files_rest.models.MultipartObject

attribute), 30
bucket_id (invenio_files_rest.models.ObjectVersion at-

tribute), 32
bucket_listmultiparts_all (in module inve-

nio_files_rest.permissions), 46
bucket_read_all (in module inve-

nio_files_rest.permissions), 46
bucket_read_versions_all (in module inve-

nio_files_rest.permissions), 46
bucket_update_all (in module inve-

nio_files_rest.permissions), 46
bucket_view() (in module invenio_files_rest.views), 51
BucketListMultiparts (in module inve-

nio_files_rest.permissions), 45
BucketLockedError, 43
BucketRead (in module invenio_files_rest.permissions),

45
BucketReadVersions (in module inve-

nio_files_rest.permissions), 45
BucketResource (class in invenio_files_rest.views), 47
BucketTag (class in invenio_files_rest.models), 26
BucketUpdate (in module inve-

nio_files_rest.permissions), 45

C
check_object_permission() (inve-

nio_files_rest.views.ObjectResource static
method), 48

check_permission() (in module inve-
nio_files_rest.views), 51

checksum (invenio_files_rest.models.FileInstance at-
tribute), 27

checksum (invenio_files_rest.models.Part attribute), 36
checksum() (invenio_files_rest.storage.FileStorage

method), 37
chunk_size (invenio_files_rest.models.MultipartObject

attribute), 30
chunk_size_or_default() (in module inve-

nio_files_rest.helpers), 39
clear_last_check() (inve-

nio_files_rest.models.FileInstance method),
27

clear_orphaned_files() (in module inve-
nio_files_rest.tasks), 41

complete() (invenio_files_rest.models.MultipartObject
method), 30

completed (invenio_files_rest.models.MultipartObject
attribute), 30

compute_checksum() (in module inve-
nio_files_rest.helpers), 39

compute_md5_checksum() (in module inve-
nio_files_rest.helpers), 39

copy() (invenio_files_rest.models.ObjectVersion
method), 32

copy() (invenio_files_rest.models.ObjectVersionTag
method), 35

copy() (invenio_files_rest.storage.FileStorage method),
37

copy_contents() (inve-
nio_files_rest.models.FileInstance method),
27

count() (invenio_files_rest.models.Part class method),
36

create() (invenio_files_rest.models.Bucket class
method), 24

create() (invenio_files_rest.models.BucketTag class

65

invenio-files-rest Documentation, Release 1.5.0

method), 26
create() (invenio_files_rest.models.FileInstance class

method), 27
create() (invenio_files_rest.models.MultipartObject

class method), 30
create() (invenio_files_rest.models.ObjectVersion class

method), 32
create() (invenio_files_rest.models.ObjectVersionTag

class method), 35
create() (invenio_files_rest.models.Part class method),

36
create_file_streaming_redirect_response() (in

module invenio_files_rest.helpers), 39
create_object() (inve-

nio_files_rest.views.ObjectResource method),
48

create_or_update() (inve-
nio_files_rest.models.BucketTag class method),
26

create_or_update() (inve-
nio_files_rest.models.ObjectVersionTag class
method), 35

created (invenio_files_rest.models.Bucket attribute), 24
created (invenio_files_rest.models.FileInstance at-

tribute), 27
created (invenio_files_rest.models.Location attribute),

29
created (invenio_files_rest.models.MultipartObject at-

tribute), 30
created (invenio_files_rest.models.ObjectVersion

attribute), 32
created (invenio_files_rest.models.Part attribute), 36

D
default (invenio_files_rest.models.Location attribute),

29
default_checksum_verification_files_query()

(in module invenio_files_rest.tasks), 41
default_location (invenio_files_rest.models.Bucket

attribute), 24
default_partfactory() (in module inve-

nio_files_rest.views), 52
default_storage_class (inve-

nio_files_rest.models.Bucket attribute), 24
delete() (invenio_files_rest.models.Bucket class

method), 24
delete() (invenio_files_rest.models.BucketTag class

method), 26
delete() (invenio_files_rest.models.FileInstance

method), 27
delete() (invenio_files_rest.models.MultipartObject

method), 30
delete() (invenio_files_rest.models.ObjectVersion class

method), 32

delete() (invenio_files_rest.models.ObjectVersionTag
class method), 35

delete() (invenio_files_rest.models.Part class method),
36

delete() (invenio_files_rest.storage.FileStorage
method), 37

delete() (invenio_files_rest.storage.PyFSFileStorage
method), 38

delete() (invenio_files_rest.views.ObjectResource
method), 48

delete_object() (inve-
nio_files_rest.views.ObjectResource method),
49

deleted (invenio_files_rest.models.Bucket attribute), 24
deleted (invenio_files_rest.models.ObjectVersion prop-

erty), 33
DuplicateTagError, 43

E
end_byte (invenio_files_rest.models.Part property), 36
ensure_input_stream_is_not_exhausted() (in

module invenio_files_rest.views), 52
ExhaustedStreamError, 43
expected_part_size() (inve-

nio_files_rest.models.MultipartObject method),
30

F
file (invenio_files_rest.models.MultipartObject at-

tribute), 30
file (invenio_files_rest.models.ObjectVersion attribute),

33
file_deleted (in module invenio_files_rest.signals), 38
file_downloaded (in module inve-

nio_files_rest.signals), 38
file_id (invenio_files_rest.models.MultipartObject at-

tribute), 30
file_id (invenio_files_rest.models.ObjectVersion

attribute), 33
file_size_limiters() (in module inve-

nio_files_rest.limiters), 45
file_uploaded (in module invenio_files_rest.signals),

38
FileInstance (class in invenio_files_rest.models), 27
FileInstanceAlreadySetError, 43
FileInstanceUnreadableError, 43
FILES_REST_DEFAULT_MAX_FILE_SIZE (in module in-

venio_files_rest.config), 6
FILES_REST_DEFAULT_QUOTA_SIZE (in module inve-

nio_files_rest.config), 6
FILES_REST_DEFAULT_STORAGE_CLASS (in module in-

venio_files_rest.config), 6
FILES_REST_FILE_TAGS_HEADER (in module inve-

nio_files_rest.config), 6

66 Index

invenio-files-rest Documentation, Release 1.5.0

FILES_REST_FILE_URI_MAX_LEN (in module inve-
nio_files_rest.config), 6

FILES_REST_MIN_FILE_SIZE (in module inve-
nio_files_rest.config), 7

FILES_REST_MULTIPART_CHUNKSIZE_MAX (in module
invenio_files_rest.config), 7

FILES_REST_MULTIPART_CHUNKSIZE_MIN (in module
invenio_files_rest.config), 7

FILES_REST_MULTIPART_EXPIRES (in module inve-
nio_files_rest.config), 7

FILES_REST_MULTIPART_MAX_PARTS (in module inve-
nio_files_rest.config), 7

FILES_REST_MULTIPART_PART_FACTORIES (in module
invenio_files_rest.config), 7

FILES_REST_OBJECT_KEY_MAX_LEN (in module inve-
nio_files_rest.config), 7

FILES_REST_PERMISSION_FACTORY (in module inve-
nio_files_rest.config), 7

FILES_REST_SIZE_LIMITERS (in module inve-
nio_files_rest.config), 7

FILES_REST_STORAGE_CLASS_LIST (in module inve-
nio_files_rest.config), 7

FILES_REST_STORAGE_FACTORY (in module inve-
nio_files_rest.config), 7

FILES_REST_STORAGE_PATH_DIMENSIONS (in module
invenio_files_rest.config), 7

FILES_REST_STORAGE_PATH_SPLIT_LENGTH (in mod-
ule invenio_files_rest.config), 7

FILES_REST_TASK_WAIT_INTERVAL (in module inve-
nio_files_rest.config), 8

FILES_REST_TASK_WAIT_MAX_SECONDS (in module in-
venio_files_rest.config), 8

FILES_REST_UPLOAD_FACTORIES (in module inve-
nio_files_rest.config), 8

FILES_REST_XSENDFILE_ENABLED (in module inve-
nio_files_rest.config), 8

FILES_REST_XSENDFILE_RESPONSE_FUNC() (in mod-
ule invenio_files_rest.config), 8

FilesException, 43
FileSizeError, 43
FileSizeLimit (class in invenio_files_rest.limiters), 45
FileStorage (class in invenio_files_rest.storage), 37
FormDataParser (class in inve-

nio_files_rest.formparser), 54

G
get() (invenio_files_rest.models.Bucket class method),

24
get() (invenio_files_rest.models.BucketTag class

method), 26
get() (invenio_files_rest.models.FileInstance class

method), 27
get() (invenio_files_rest.models.MultipartObject class

method), 30

get() (invenio_files_rest.models.ObjectVersion class
method), 33

get() (invenio_files_rest.models.ObjectVersionTag class
method), 35

get() (invenio_files_rest.views.BucketResource method),
47

get() (invenio_files_rest.views.ObjectResource method),
49

get_by_bucket() (inve-
nio_files_rest.models.ObjectVersion class
method), 33

get_by_name() (invenio_files_rest.models.Location
class method), 29

get_by_uri() (invenio_files_rest.models.FileInstance
class method), 27

get_default() (invenio_files_rest.models.Location
class method), 29

get_description() (inve-
nio_files_rest.errors.MissingQueryParameter
method), 44

get_errors() (invenio_files_rest.errors.StorageError
method), 44

get_object() (invenio_files_rest.views.ObjectResource
class method), 49

get_or_create() (invenio_files_rest.models.Part class
method), 36

get_or_none() (invenio_files_rest.models.Part class
method), 36

get_tags() (invenio_files_rest.models.Bucket method),
24

get_tags() (invenio_files_rest.models.ObjectVersion
method), 33

get_value() (invenio_files_rest.models.BucketTag class
method), 26

get_value() (invenio_files_rest.models.ObjectVersionTag
class method), 35

get_versions() (inve-
nio_files_rest.models.ObjectVersion class
method), 33

H
head() (invenio_files_rest.views.BucketResource

method), 47

I
id (invenio_files_rest.models.Bucket attribute), 25
id (invenio_files_rest.models.FileInstance attribute), 27
id (invenio_files_rest.models.Location attribute), 29
init_app() (invenio_files_rest.ext.InvenioFilesREST

method), 23
init_config() (invenio_files_rest.ext.InvenioFilesREST

method), 23
init_contents() (inve-

nio_files_rest.models.FileInstance method),

Index 67

invenio-files-rest Documentation, Release 1.5.0

27
initialize() (invenio_files_rest.storage.FileStorage

method), 37
initialize() (invenio_files_rest.storage.PyFSFileStorage

method), 38
invalid_subresource_validator() (in module inve-

nio_files_rest.views), 52
InvalidKeyError, 43
InvalidOperationError, 43
InvalidTagError, 44
invenio_files_rest
module, 8

invenio_files_rest.config
module, 6

invenio_files_rest.errors
module, 43

invenio_files_rest.ext
module, 23

invenio_files_rest.formparser
module, 54

invenio_files_rest.helpers
module, 39

invenio_files_rest.limiters
module, 45

invenio_files_rest.models
module, 23

invenio_files_rest.permissions
module, 45

invenio_files_rest.signals
module, 38

invenio_files_rest.storage
module, 37

invenio_files_rest.tasks
module, 41

invenio_files_rest.views
module, 47

InvenioFilesREST (class in invenio_files_rest.ext), 23
is_head (invenio_files_rest.models.ObjectVersion

attribute), 33
is_valid_chunksize() (inve-

nio_files_rest.models.MultipartObject static
method), 30

is_valid_size() (inve-
nio_files_rest.models.MultipartObject static
method), 30

ix_uq_partial_files_object_is_head_dll()
(invenio_files_rest.models.ObjectVersion class
method), 33

K
key (invenio_files_rest.models.BucketTag attribute), 26
key (invenio_files_rest.models.MultipartObject at-

tribute), 31

key (invenio_files_rest.models.ObjectVersion attribute),
33

key (invenio_files_rest.models.ObjectVersionTag at-
tribute), 35

L
last_check (invenio_files_rest.models.FileInstance at-

tribute), 27
last_check_at (invenio_files_rest.models.FileInstance

attribute), 28
last_part_number (inve-

nio_files_rest.models.MultipartObject prop-
erty), 31

last_part_size (inve-
nio_files_rest.models.MultipartObject prop-
erty), 31

listobjects() (invenio_files_rest.views.BucketResource
method), 47

Location (class in invenio_files_rest.models), 29
location (invenio_files_rest.models.Bucket attribute),

25
location_update_all (in module inve-

nio_files_rest.permissions), 46
location_view() (in module invenio_files_rest.views),

52
LocationResource (class in invenio_files_rest.views),

48
LocationUpdate (in module inve-

nio_files_rest.permissions), 45
locked (invenio_files_rest.models.Bucket attribute), 25

M
make_path() (in module invenio_files_rest.helpers), 39
MAX_CONTENT_LENGTH (in module inve-

nio_files_rest.config), 8
max_file_size (invenio_files_rest.models.Bucket

attribute), 25
merge_multipartobject() (in module inve-

nio_files_rest.tasks), 41
merge_parts() (invenio_files_rest.models.MultipartObject

method), 31
methods (invenio_files_rest.views.BucketResource

attribute), 48
methods (invenio_files_rest.views.LocationResource at-

tribute), 48
methods (invenio_files_rest.views.ObjectResource

attribute), 49
migrate_file() (in module invenio_files_rest.tasks), 42
mimetype (invenio_files_rest.models.ObjectVersion at-

tribute), 34
MIMETYPE_WHITELIST (in module inve-

nio_files_rest.helpers), 39
minsize_validator() (in module inve-

nio_files_rest.views), 52

68 Index

invenio-files-rest Documentation, Release 1.5.0

MissingQueryParameter, 44
module

invenio_files_rest, 8
invenio_files_rest.config, 6
invenio_files_rest.errors, 43
invenio_files_rest.ext, 23
invenio_files_rest.formparser, 54
invenio_files_rest.helpers, 39
invenio_files_rest.limiters, 45
invenio_files_rest.models, 23
invenio_files_rest.permissions, 45
invenio_files_rest.signals, 38
invenio_files_rest.storage, 37
invenio_files_rest.tasks, 41
invenio_files_rest.views, 47

multipart (invenio_files_rest.models.Part attribute), 36
multipart_complete() (inve-

nio_files_rest.views.ObjectResource method),
49

multipart_delete() (inve-
nio_files_rest.views.ObjectResource method),
50

multipart_delete_all (in module inve-
nio_files_rest.permissions), 46

multipart_init() (inve-
nio_files_rest.views.ObjectResource method),
50

multipart_listparts() (inve-
nio_files_rest.views.ObjectResource method),
50

multipart_listuploads() (inve-
nio_files_rest.views.BucketResource method),
48

multipart_read_all (in module inve-
nio_files_rest.permissions), 46

multipart_uploadpart() (inve-
nio_files_rest.views.ObjectResource method),
50

MultipartAlreadyCompleted, 44
MultipartDelete (in module inve-

nio_files_rest.permissions), 46
MultipartException, 44
MultipartInvalidChunkSize, 44
MultipartInvalidPartNumber, 44
MultipartInvalidSize, 44
MultipartMissingParts, 44
MultipartNoPart, 44
MultipartNotCompleted, 44
MultipartObject (class in invenio_files_rest.models),

30
MultipartRead (in module inve-

nio_files_rest.permissions), 46

N
name (invenio_files_rest.models.Location attribute), 29
need_bucket_permission() (in module inve-

nio_files_rest.views), 52
need_location_permission() (in module inve-

nio_files_rest.views), 52
need_permissions() (in module inve-

nio_files_rest.views), 53
ngfileupload_partfactory() (in module inve-

nio_files_rest.views), 53
ngfileupload_uploadfactory() (in module inve-

nio_files_rest.views), 53

O
object_delete_all (in module inve-

nio_files_rest.permissions), 47
object_delete_version_all (in module inve-

nio_files_rest.permissions), 47
object_read_all (in module inve-

nio_files_rest.permissions), 47
object_read_version_all (in module inve-

nio_files_rest.permissions), 47
object_version (inve-

nio_files_rest.models.ObjectVersionTag at-
tribute), 35

object_view() (in module invenio_files_rest.views), 53
ObjectDelete (in module inve-

nio_files_rest.permissions), 46
ObjectDeleteVersion (in module inve-

nio_files_rest.permissions), 46
ObjectRead (in module invenio_files_rest.permissions),

46
ObjectReadVersion (in module inve-

nio_files_rest.permissions), 46
ObjectResource (class in invenio_files_rest.views), 48
ObjectVersion (class in invenio_files_rest.models), 31
ObjectVersionTag (class in invenio_files_rest.models),

35
open() (invenio_files_rest.storage.FileStorage method),

37
open() (invenio_files_rest.storage.PyFSFileStorage

method), 38

P
parse() (invenio_files_rest.formparser.FormDataParser

method), 54
parse_header_tags() (in module inve-

nio_files_rest.views), 54
Part (class in invenio_files_rest.models), 36
part_number (invenio_files_rest.models.Part attribute),

36
part_size (invenio_files_rest.models.Part property), 36
pass_bucket() (in module invenio_files_rest.views), 54

Index 69

invenio-files-rest Documentation, Release 1.5.0

pass_multipart() (in module invenio_files_rest.views),
54

permission_factory() (in module inve-
nio_files_rest.permissions), 47

populate_from_path() (in module inve-
nio_files_rest.helpers), 40

post() (invenio_files_rest.views.LocationResource
method), 48

post() (invenio_files_rest.views.ObjectResource
method), 50

progress_updater() (in module inve-
nio_files_rest.tasks), 42

put() (invenio_files_rest.views.ObjectResource method),
50

pyfs_storage_factory() (in module inve-
nio_files_rest.storage), 38

PyFSFileStorage (class in invenio_files_rest.storage),
38

Q
query_by_bucket() (inve-

nio_files_rest.models.MultipartObject class
method), 31

query_by_multipart() (inve-
nio_files_rest.models.Part class method),
36

query_expired() (inve-
nio_files_rest.models.MultipartObject class
method), 31

quota_left (invenio_files_rest.models.Bucket property),
25

quota_size (invenio_files_rest.models.Bucket attribute),
25

R
readable (invenio_files_rest.models.FileInstance at-

tribute), 28
relink_all() (invenio_files_rest.models.ObjectVersion

class method), 34
remove() (invenio_files_rest.models.Bucket method), 25
remove() (invenio_files_rest.models.ObjectVersion

method), 34
remove_expired_multipartobjects() (in module

invenio_files_rest.tasks), 42
remove_file_data() (in module inve-

nio_files_rest.tasks), 42
restore() (invenio_files_rest.models.ObjectVersion

method), 34

S
sanitize_mimetype() (in module inve-

nio_files_rest.helpers), 40
save() (invenio_files_rest.storage.FileStorage method),

37

save() (invenio_files_rest.storage.PyFSFileStorage
method), 38

schedule_checksum_verification() (in module in-
venio_files_rest.tasks), 42

send_file() (invenio_files_rest.models.FileInstance
method), 28

send_file() (invenio_files_rest.models.ObjectVersion
method), 34

send_file() (invenio_files_rest.storage.FileStorage
method), 37

send_object() (invenio_files_rest.views.ObjectResource
static method), 51

send_stream() (in module invenio_files_rest.helpers),
40

set_contents() (inve-
nio_files_rest.models.FileInstance method),
28

set_contents() (inve-
nio_files_rest.models.ObjectVersion method),
34

set_contents() (invenio_files_rest.models.Part
method), 36

set_file() (invenio_files_rest.models.ObjectVersion
method), 34

set_location() (inve-
nio_files_rest.models.ObjectVersion method),
34

set_uri() (invenio_files_rest.models.FileInstance
method), 28

size (invenio_files_rest.models.Bucket attribute), 25
size (invenio_files_rest.models.FileInstance attribute),

28
size (invenio_files_rest.models.MultipartObject at-

tribute), 31
size_limit (invenio_files_rest.models.Bucket property),

25
snapshot() (invenio_files_rest.models.Bucket method),

25
start_byte (invenio_files_rest.models.Part property),

37
storage() (invenio_files_rest.models.FileInstance

method), 28
storage_class (invenio_files_rest.models.FileInstance

attribute), 28
StorageError, 44
stream_uploadfactory() (in module inve-

nio_files_rest.views), 54
sync() (invenio_files_rest.models.Bucket method), 25

U
UnexpectedFileSizeError, 45
update() (invenio_files_rest.storage.FileStorage

method), 37

70 Index

invenio-files-rest Documentation, Release 1.5.0

update() (invenio_files_rest.storage.PyFSFileStorage
method), 38

update_checksum() (inve-
nio_files_rest.models.FileInstance method),
28

update_contents() (inve-
nio_files_rest.models.FileInstance method),
28

updated (invenio_files_rest.models.Bucket attribute), 26
updated (invenio_files_rest.models.FileInstance at-

tribute), 28
updated (invenio_files_rest.models.Location attribute),

29
updated (invenio_files_rest.models.MultipartObject at-

tribute), 31
updated (invenio_files_rest.models.ObjectVersion

attribute), 35
updated (invenio_files_rest.models.Part attribute), 37
upload_id (invenio_files_rest.models.MultipartObject

attribute), 31
upload_id (invenio_files_rest.models.Part attribute), 37
uri (invenio_files_rest.models.FileInstance attribute), 28
uri (invenio_files_rest.models.Location attribute), 29

V
validate_key() (inve-

nio_files_rest.models.MultipartObject method),
31

validate_key() (inve-
nio_files_rest.models.ObjectVersion method),
35

validate_name() (invenio_files_rest.models.Location
method), 29

validate_storage_class() (inve-
nio_files_rest.models.Bucket method), 26

validate_tag() (in module invenio_files_rest.views),
54

validate_uri() (inve-
nio_files_rest.models.FileInstance method),
28

value (invenio_files_rest.models.BucketTag attribute), 26
value (invenio_files_rest.models.ObjectVersionTag at-

tribute), 36
verify_checksum() (in module inve-

nio_files_rest.tasks), 43
verify_checksum() (inve-

nio_files_rest.models.FileInstance method),
28

version_id (invenio_files_rest.models.ObjectVersion
attribute), 35

version_id (invenio_files_rest.models.ObjectVersionTag
attribute), 36

W
writable (invenio_files_rest.models.FileInstance at-

tribute), 29

Index 71

	User’s Guide
	Overview
	The physical layer
	Location
	Storage
	FileInstance

	The abstraction layer
	ObjectVersion
	Bucket

	REST APIs

	Installation
	Configuration
	Usage
	Getting started
	Create a location
	Create a bucket
	Create objects
	Retrieve objects

	Data model
	Buckets
	ObjectVersion
	FileInstance

	REST APIs
	Create a bucket
	Uploading Files
	Serving files
	API Reference
	Default Location
	Buckets
	ObjectVersions

	Deleting files
	Soft deletion
	Hard deletion

	Authorization
	Response codes
	Authorization definition

	Security
	Signals
	Integrity

	Storage Backends
	Build your own Storage Backend

	JS Uploaders
	Multipart Upload
	Large Files
	Data Migration

	API Reference
	API Docs
	Models
	Storage
	Signals
	File streaming
	Tasks
	Exceptions
	Limiters
	Permissions
	Views
	Form parser

	Additional Notes
	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines

	Changes
	License
	Contributors

	Python Module Index
	Index

