

Invenio-Files-REST

[image: _images/badge.svg]
 [https://github.com/inveniosoftware/invenio-files-rest/actions?query=workflow%3ACI][image: _images/invenio-files-rest.svg]
 [https://coveralls.io/r/inveniosoftware/invenio-files-rest][image: _images/invenio-files-rest1.svg]
 [https://pypi.org/pypi/invenio-files-rest][image: _images/invenio-files-rest2.svg]
 [https://github.com/inveniosoftware/invenio-files-rest/blob/master/LICENSE]Invenio-Files-REST is a files storage module. It allows you to store and
retrieve files in a similar way to Amazon S3 APIs.

Features:

	Files storage with configurable storage backends

	Secure REST APIs

	Support for large file uploads and multipart upload.

	Customizable access control

	File integrity monitoring

Further documentation is available on https://invenio-files-rest.readthedocs.io/.

User’s Guide

This part of the documentation will show you how to get started in using
Invenio-Files-REST.

	Overview
	The physical layer

	The abstraction layer

	REST APIs

	Installation

	Configuration
	FILES_REST_DEFAULT_MAX_FILE_SIZE

	FILES_REST_DEFAULT_QUOTA_SIZE

	FILES_REST_DEFAULT_STORAGE_CLASS

	FILES_REST_FILE_TAGS_HEADER

	FILES_REST_FILE_URI_MAX_LEN

	FILES_REST_MIN_FILE_SIZE

	FILES_REST_MULTIPART_CHUNKSIZE_MAX

	FILES_REST_MULTIPART_CHUNKSIZE_MIN

	FILES_REST_MULTIPART_EXPIRES

	FILES_REST_MULTIPART_MAX_PARTS

	FILES_REST_MULTIPART_PART_FACTORIES

	FILES_REST_OBJECT_KEY_MAX_LEN

	FILES_REST_PERMISSION_FACTORY

	FILES_REST_SIZE_LIMITERS

	FILES_REST_STORAGE_CLASS_LIST

	FILES_REST_STORAGE_FACTORY

	FILES_REST_STORAGE_PATH_DIMENSIONS

	FILES_REST_STORAGE_PATH_SPLIT_LENGTH

	FILES_REST_TASK_WAIT_INTERVAL

	FILES_REST_TASK_WAIT_MAX_SECONDS

	FILES_REST_UPLOAD_FACTORIES

	FILES_REST_XSENDFILE_ENABLED

	FILES_REST_XSENDFILE_RESPONSE_FUNC()

	MAX_CONTENT_LENGTH

	Usage
	Getting started

	Data model

	REST APIs

	Deleting files

	Authorization

	Security

	Signals

	Storage Backends

	JS Uploaders

	Multipart Upload

	Large Files

	Data Migration

API Reference

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Docs
	InvenioFilesREST

	Models

	Storage

	Signals

	File streaming

	Tasks

	Exceptions

	Limiters

	Permissions

	Views

	Form parser

Additional Notes

Notes on how to contribute, legal information and changes are here for the
interested.

	Contributing

	Changes

	License

	Contributors

Overview

Invenio-Files-REST is a files storage module. It allows you to store and
retrieve files in a similar way to Amazon S3 APIs. It provides a set of
features:

	An abstraction of physical files storage.

	Configurable storage backends with the ability to build your very own.

	A robust REST API.

	Highly customizable access-control.

	Secure file handling.

	Integrity checking mechanism.

	Support for large file uploads and multipart upload.

	Signals for system events.

The REST API follows best practices and supports, e.g.:

	Content negotiation and links headers.

	Cache control via ETags and Last-Modified headers.

	Optimistic concurrency control via ETags.

	Rate-limiting, Cross-Origin Resource Sharing, and various security headers.

Here is an introduction of the main concepts.

[image: _images/data_model.png]

The physical layer

Provides physical access to files defining the storage locations and how to perform operations.

Location

A Location is a representation of a storage system. A location is described by its name
and URI. The URI could be a path in a local directory or a remote system.
For example, a location could have as a name shared-folder and URI /mnt/shared.

Among all defined locations, one has to be set as the default.

You can learn how to use Locations in the section Create a location.

Storage

A Storage provides the interface to interact with a Location and perform basic
operations such as retrieve, store or delete files.

Multiple storage can be useful, for example, to represent offline/online location so that the system
known if it can serve files and/or what is the reliability.

By default, Invenio-Files-REST implements a storage for local files
invenio_files_rest.storage.PyFSFileStorage. It controls how files are physically stored,
for example the folders and files structure.

You can create new storage implementations and configure Invenio to use any existing storage.
Check Storage Backends documentation for detailed instructions on how to build your own.

An example of a remote storage system is implemented in the module
Invenio-S3 [https://invenio-s3.readthedocs.io/] which offers integration
with any S3 REST API compatible object storage.

FileInstance

A file on disk is represented by a FileInstance. A FileInstance
describes the path to the file, the used storage, the size and the checksum of the
file on disk.

To summarize

FileInstances are stored on disk in a specified Location using Storage APIs.

The abstraction layer

Provides an abstract way to logically represent, organise and manipulate files. This abstraction
layer allows to perform files operations without physically accessing files.

ObjectVersion

An ObjectVersion is the logical representation of a version of a file and metadata at a
specific point in time. It contains the reference to the FileInstance that
it corresponds. For example, the file name is stored in the ObjectVersion metadata.

Note

File names could contain non-alphanumeric characters, which could be a problem depending on your file system.
For example, a user could upload a file named thesis&first*v1.pdf.

In Invenio-Files-REST, the default Storage will save the file in a tree of directories that are uniquely
named. The file name will be changed to data (with no extension) and the original file name will
be stored in the metadata of the ObjectVersion.

The final path to the file on disk will be something like /mnt/shared/2a/4f/39-5033-af42-k42m/data.

When an ObjectVersion has no reference to a FileInstance, it marks that the file has been
logically (and not physically) deleted. This is also known as
delete marker (or soft deletion).

Given multiple ObjectVersions of the same file, the latest (or most recent)
version is referred to as the HEAD.

ObjectVersions are very useful to perform operations on file’s metadata without
directly accessing to the storage. For example, given that the filename is part
of the ObjectVersion metadata, a rename operation is simply a database query to change its value.

Moreover, multiple ObjectVersion can reference the same FileInstance. This allows to perform
some operations more efficiently, such as create a snapshot without physically duplicating files or
migrating data.

Let’s see an example

A user uploads a new file called thesis.pdf.

With location and storage mentioned above, the file will be physically stored in /mnt/shared in a tree
of folders and with filename data (its FileInstance URI will be something like /<folders>/data).

The logical representation of the file, the ObjectVersion, will contain the reference to that FileInstance
and it will also store the filename thesis.pdf.

If, afterwards, the file is renamed to mythesis.pdf, a new ObjectVersion will be created with the
new filename keeping the reference to the same FileInstance.

If the file is then removed, a new ObjectVersion will be created with no reference to any FileInstance, without
physically deleting the file on disk.

Bucket

A Bucket is a container for ObjectVersion objects.
Just as in a traditional file system where files are contained in folders, each
ObjectVersion has to be contained in a Bucket. The Bucket has a
reference to the Location where files are stored.

Buckets are useful to create collections of objects and to act on them. For example, bucket keeps track of the
total size of the object if contains and allows definitions of quotas.

A bucket can also be marked as deleted, in which case the contents become inaccessible.

To summarize

Bucket contains ObjectVersions, a version of a file and its metadata.
Each ObjectVersion has a reference to a FileInstance.

REST APIs

Invenio-Files-REST provides a set of REST APIs to create or manage resources such as Buckets
or ObjectVersions. You can learn more about it in the REST APIs section of the documentation.

Installation

Invenio-Files-REST is on PyPI so all you need is:

$ pip install invenio-files-rest

Configuration

Invenio Files Rest module configuration file.

	
invenio_files_rest.config.FILES_REST_DEFAULT_MAX_FILE_SIZE = None

	Default maximum file size for a bucket in bytes. None if unlimited.

	
invenio_files_rest.config.FILES_REST_DEFAULT_QUOTA_SIZE = None

	Default quota size for a bucket in bytes. None if unlimited.

	
invenio_files_rest.config.FILES_REST_DEFAULT_STORAGE_CLASS = 'S'

	Default storage class. Must be one of FILES_REST_STORAGE_CLASS_LIST.

	
invenio_files_rest.config.FILES_REST_FILE_TAGS_HEADER = 'X-Invenio-File-Tags'

	Header for updating file tags.

	
invenio_files_rest.config.FILES_REST_FILE_URI_MAX_LEN = 255

	Maximum length of the FileInstance.uri field.

Warning

Setting this variable to anything higher than 255 is only supported
with PostgreSQL database.

	
invenio_files_rest.config.FILES_REST_MIN_FILE_SIZE = 1

	Minimum file size when uploading, in bytes (do not allow empty files).

	
invenio_files_rest.config.FILES_REST_MULTIPART_CHUNKSIZE_MAX = 5368709120

	Maximum chunk size in bytes of multipart objects.

	
invenio_files_rest.config.FILES_REST_MULTIPART_CHUNKSIZE_MIN = 5242880

	Minimum chunk size in bytes of multipart objects.

	
invenio_files_rest.config.FILES_REST_MULTIPART_EXPIRES = datetime.timedelta(days=4)

	Time delta after which a multipart upload is considered expired.

	
invenio_files_rest.config.FILES_REST_MULTIPART_MAX_PARTS = 10000

	Maximum number of parts when uploading files with multipart uploads.

	
invenio_files_rest.config.FILES_REST_MULTIPART_PART_FACTORIES = ['invenio_files_rest.views:default_partfactory', 'invenio_files_rest.views:ngfileupload_partfactory']

	Import path of factories used when parsing upload params for multipart.

	
invenio_files_rest.config.FILES_REST_OBJECT_KEY_MAX_LEN = 255

	Maximum length of the ObjectVersion.key field.

Warning

Setting this variable to anything higher than 255 is only supported
with PostgreSQL database.

	
invenio_files_rest.config.FILES_REST_PERMISSION_FACTORY = 'invenio_files_rest.permissions.permission_factory'

	Permission factory to control the files access from the REST interface.

	
invenio_files_rest.config.FILES_REST_SIZE_LIMITERS = 'invenio_files_rest.limiters.file_size_limiters'

	Import path of file size limiters factory to control bucket size limits.

	
invenio_files_rest.config.FILES_REST_STORAGE_CLASS_LIST = {'A': 'Archive', 'S': 'Standard'}

	Storage class list defines the systems storage classes.

Storage classes are useful for e.g. defining the type of storage an object
is located on (e.g. offline/online), so that the system known if it can serve
the file and/or what is the reliability.

	
invenio_files_rest.config.FILES_REST_STORAGE_FACTORY = 'invenio_files_rest.storage.pyfs_storage_factory'

	Import path of factory used to create a storage instance.

	
invenio_files_rest.config.FILES_REST_STORAGE_PATH_DIMENSIONS = 2

	Number of directory levels created when generating the path of a file.

For example, if split length set to 2 and dimension to 3, the final
path will be a2/ad/4k/c9-8j39-34jn/.

	
invenio_files_rest.config.FILES_REST_STORAGE_PATH_SPLIT_LENGTH = 2

	Number of chars to use as folder name when generating the path of a file.

For example, if split length set to 4 and dimension to 4, the final
path will be a2ad/4kc9/8j39-34jn/.

	
invenio_files_rest.config.FILES_REST_TASK_WAIT_INTERVAL = 2

	Interval in seconds between sending a whitespace to not close connection.

	
invenio_files_rest.config.FILES_REST_TASK_WAIT_MAX_SECONDS = 600

	Maximum number of seconds to wait for a task to finish.

	
invenio_files_rest.config.FILES_REST_UPLOAD_FACTORIES = ['invenio_files_rest.views:stream_uploadfactory', 'invenio_files_rest.views:ngfileupload_uploadfactory']

	Import path of factories used when parsing upload parameters.

Note

Factories that reads request.stream directly must be first in the list,
otherwise Werkzeug’s form-data parser will read the stream.

	
invenio_files_rest.config.FILES_REST_XSENDFILE_ENABLED = False

	Use the X-Accel-Redirect header to stream the file through a reverse proxy(
e.g NGINX).

	
invenio_files_rest.config.FILES_REST_XSENDFILE_RESPONSE_FUNC(obj)

	Function for the creation of a file streaming redirect response.

	
invenio_files_rest.config.MAX_CONTENT_LENGTH = 16777216

	Maximum allowed content length for form data.

This value limits the maximum file upload size via multipart-formdata and is
a Flask configuration variable that by default is unlimited. The value must
be larger than the maximum part size you want to accept via
application/multipart-formdata (used by e.g. ng-file upload). This value only
limits file upload size via application/multipart-formdata and in particular
does not restrict the maximum file size possible when streaming a file in the
body of a PUT request.

Flask, by default, saves any file bigger than 500kb to a temporary file on
disk, thus do not set this value to large or you may run out of disk space on
your nodes.

Usage

Invenio-Files-REST module.

This guide will show you how to get started with
Invenio-Files-REST. It assumes that you already have knowledge of
Flask applications and Invenio modules.

It will then explain key topics and concepts of this module.

Getting started

You will learn how to create a new Location, a Bucket and an ObjectVersion
using the programmatic APIs of Invenio-Files-REST.

First, you will have to setup your virtualenv environment and install
this module along with all it’s dependencies.

After that, start a Python shell and execute the following commands:

>>> from flask import Flask
>>> app = Flask('myapp')

This is the initial configuration needed to have things running:

>>> app.config['BROKER_URL'] = 'redis://'
>>> app.config['CELERY_RESULT_BACKEND'] = 'redis://'
>>> app.config['DATADIR'] = 'data'
>>> app.config['FILES_REST_MULTIPART_CHUNKSIZE_MIN'] = 4
>>> app.config['REST_ENABLE_CORS'] = True
>>> app.config['SECRET_KEY'] = 'CHANGEME'
>>> app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://'
>>> app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

>>> allow_all = lambda *args, **kwargs: \
... type('Allow', (), {'can': lambda self: True})()
>>> app.config['FILES_REST_PERMISSION_FACTORY'] = allow_all

Relevant configuration variables will be explained later on.
Now let’s initialize all required Invenio extensions:

>>> import shutil
>>> from os import makedirs
>>> from os.path import dirname, exists, join
>>> from pprint import pprint
>>> import json

>>> from invenio_i18n import Babel
>>> from flask_menu import Menu
>>> from invenio_db import InvenioDB, db
>>> from invenio_rest import InvenioREST
>>> from invenio_admin import InvenioAdmin
>>> from invenio_accounts import InvenioAccounts
>>> from invenio_access import InvenioAccess
>>> from invenio_accounts.views import blueprint as accounts_blueprint
>>> from invenio_celery import InvenioCelery
>>> from invenio_files_rest import InvenioFilesREST
>>> from invenio_files_rest.views import blueprint

>>> ext_babel = Babel(app)
>>> ext_menu = Menu(app)
>>> ext_db = InvenioDB(app)
>>> ext_rest = InvenioREST(app)
>>> ext_admin = InvenioAdmin(app)
>>> ext_accounts = InvenioAccounts(app)
>>> ext_access = InvenioAccess(app)

You can now initialize Invenio-Files-REST. When using Invenio-Files-REST as
dependency of an Invenio applicaton, the REST views are automatically
registered via entry points. For this example, you will have to register
them manually and push a Flask application context:

>>> ext_rest = InvenioFilesREST(app)

>>> app.register_blueprint(accounts_blueprint)
>>> app.register_blueprint(blueprint)

>>> app.app_context().push()

Let’s create the database and tables, using an in-memory SQLite database:

>>> db.create_all()

When you setup Invenio-Files-REST for the first time, you will have to define
a default Location. It can be local or remote and it will be accessed via
its URI.

Create a location

For this example, you will use a temporary directory:

>>> from invenio_files_rest.models import Location
>>> d = app.config['DATADIR'] # folder `data`
>>> if exists(d): shutil.rmtree(d)
>>> makedirs(d)
>>> loc = Location(name='local', uri=d, default=True)
>>> db.session.add(loc)
>>> db.session.commit()

Create a bucket

In order to create, modify or delete files, you have to create a files
container first, the Bucket.

>>> from invenio_files_rest.models import Bucket
>>> b1 = Bucket.create(loc)
>>> db.session.commit()

Create objects

Files are represented by ObjectVersions. After creating a bucket, you can now
add files to it, for example:

>>> from io import BytesIO
>>> from invenio_files_rest.models import ObjectVersion
>>> a_file = BytesIO(b"my file contents")
>>> f = ObjectVersion.create(b1, "thesis.pdf", stream=a_file)
>>> db.session.commit()

Retrieve objects

You can now retrieve objects. Retrieve the bucket object:

>>> b = Bucket.get(b1.id)

Retrieve all ObjectVersions contained in a bucket:

>>> file_names = [ov.key for ov in ObjectVersion.get_by_bucket(b1.id)]

Retrieve a specific ObjectVersion by filename:

>>> f = ObjectVersion.get(b1.id, "thesis.pdf")

Data model

This is a more in-depth explanation of the concepts introduced in the
Overview section.

Buckets

A bucket is a container of objects. It is uniquely identified by an ID.
Buckets have a default Location and Storage class.
Individual objects in the bucket can however have different
Locations and Storage classes.

The size field stores the current size of the bucket. When a new
object is added or completely removed, its size is updated.

Buckets can have constraints on the maximum amount of objects that they can
contain. It is controlled by the function
invenio_files_rest.limiters.file_size_limiters():
by default, a new object can be added to the bucket if the maximum
size of the file is lower than
invenio_files_rest.config.FILES_REST_DEFAULT_MAX_FILE_SIZE
and if the total quota (the sum of sizes of all files) is lower than
invenio_files_rest.config.FILES_REST_DEFAULT_QUOTA_SIZE.

Buckets can be marked as locked. When a bucket is locked, objects
can be retrieved but no object can be added and deleted.

Similarly to objects, bucket can be logically marked as deleted
without affecting the actual content. When it is deleted, it simply means
that no objects can be retrieved or added via APIs.

Finally, buckets provide ways to create or synchronize copies: the
snapshot operation creates a new copy of a bucket with all
the latest versions of the object it contains, without duplicating files
on disk.
The sync operation mirrors objects contained in the source bucket
to the destination bucket.

ObjectVersion

ObjectVersions are objects that represent a specific version of a file at
a given point in time. ObjectVersions are uniquely identified by its ID.
They are always contained in an existing Bucket by having the reference
bucket_id to it.

An ObjectVersion describes the file (FileInstance) that references
with the attribute file_id. It also stores some metadata of the file:
the file name, stored in the key attribute and the version, stored in
version_id attribute. The triplet (bucket_id, key, version_id) is
unique.

For a given key in a Bucket, normally the latest version in history
is marked as the head.

The key has a maximum length defined via
invenio_files_rest.config.FILES_REST_OBJECT_KEY_MAX_LEN.

ObjectVersion can be marked as deleted by removing its reference to the
file it represents: from the user perspective, deleting a file normally
means adding a new ObjectVersion, which will be the new head,
without file_id.

FileInstance

A file instance represents a file on disk. A file instance may be linked
from many objects, while an object can have one and only one file instance.

The file on disk can be retrieved by the file instance uri, which
is an absolute path/URI generated when adding the file: the base path is
retrieved from the Location used for this file, and the relative
path is assigned by the file’s Storage. It is responsibility of the
Storage, which is aware of the file system that is managing, to generate
a unique final path for the file. You can modify how the path is generated
with the default storage
invenio_files_rest.storage.pyfs_storage_factory()
by changing
invenio_files_rest.config.FILES_REST_STORAGE_PATH_SPLIT_LENGTH or
invenio_files_rest.config.FILES_REST_STORAGE_PATH_DIMENSIONS.

A file instance may not be ready to be accessed, for example in case of
multipart uploads: the attribute readable marks it. It can also be
marked as not writable if it cannot be deleted or replaced, for
safety reasons.

checksum, last_check_at and last_check are
attributes used to store information about integrity checks.

You can find the documentation of each API in the API Docs.

REST APIs

REST APIs allow you to perform most of the operations needed when
manipulating files.

By design, Locations cannot be created using REST APIs.
This is because they depend on your physical file storage infrastructure.
You will have to create them in advance when setting up your Invenio
instance.

To be able to run each of the next steps, you can instantiate and start an
Invenio instance as described here [https://invenio.readthedocs.io/en/latest/quickstart/quickstart.html#create-an-invenio-instance].

Create a bucket

A bucket can be created by a POST request to /files.
The response will contain the unique ID of the bucket.

$ curl -X POST http://localhost:5000/api/files

{
 "max_file_size": null,
 "updated": "2019-05-16T13:07:21.595398+00:00",
 "locked": false,
 "links": {
 "self": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e",
 "uploads": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e?uploads",
 "versions": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e?versions"
 },
 "created": "2019-05-16T13:07:21.595391+00:00",
 "quota_size": null,
 "id": "cb8d0fa7-2349-484b-89cb-16573d57f09e",
 "size": 0
}

Uploading Files

You can upload, download and modify single files via REST APIs.
A file is uniquely identified within a bucket by its name and version.
Each file can have multiple versions.

Let’s upload a file called my_file.txt inside the bucket that
was just created.

$ BUCKET=cb8d0fa7-2349-484b-89cb-16573d57f09e

$ echo "my file content" > my_file.txt

$ curl -i -X PUT --data-binary @my_file.txt \
 "http://localhost:5000/api/files/$BUCKET/my_file.txt"

{
 "mimetype": "text/plain",
 "updated": "2019-05-16T13:10:22.621533+00:00",
 "links": {
 "self": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e/my_file.txt",

 "version": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e/my_file.txt?
 versionId=7f62676d-0b8e-4d77-9687-8465dc506ca8",
 "uploads": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e/
 my_file.txt?uploads"
 },
 "is_head": true,
 "tags": {},
 "checksum": "md5:d7d02c7125bdcdd857eb70cb5f19aecc",
 "created": "2019-05-16T13:10:22.617714+00:00",
 "version_id": "7f62676d-0b8e-4d77-9687-8465dc506ca8",
 "delete_marker": false,
 "key": "my_file.txt",
 "size": 14
}

If you have a new version of the file, you can upload it to the same bucket
using the same filename. In this case, a new ObjectVersion will be created.

$ echo "my file content version 2" > my_filev2.txt

$ curl -i -X PUT --data-binary @my_filev2.txt \
 "http://localhost:5000/api/files/$BUCKET/my_file.txt"

{
 "mimetype": "text/plain",
 "updated": "2019-05-16T13:11:22.621533+00:00",
 "links": {
 "self": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e/my_file.txt",

 "version": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e/my_file.txt?
 versionId=24bf075f-09f4-42f8-9fbe-3f00b8aac3e8",
 "uploads": "http://localhost:5000/api/files/
 cb8d0fa7-2349-484b-89cb-16573d57f09e/
 my_file.txt?uploads"
 },
 "is_head": true,
 "tags": {},
 "checksum": "md5:fe76512703258a894e56bac89d2e8dec",
 "created": "2019-05-16T13:11:22.617714+00:00",
 "version_id": "24bf075f-09f4-42f8-9fbe-3f00b8aac3e8",
 "delete_marker": false,
 "key": "my_file.txt",
 "size": 13
}

When integrating the REST APIs to upload files via a web application, you
might use JavaScript to improve user experience. Invenio-Files-REST provides
out of the box integration with JavaScript uploaders. See the
JS Uploaders section for more information.

Invenio-Files-REST also provides different ways to upload large files. See
the Multipart Upload and Large Files sections
for more information.

Serving files

To serve and allow download of files, you can perform a GET request
specifying the bucket and the filename used to upload the file.

$ curl -i -X GET "http://localhost:5000/api/files/$BUCKET/my_file.txt"

You can also list files or download specific versions of files. See the REST
APIs reference documentation below for more information.

Be aware that there are security implications to take into account when
serving files. See the Security for more information.

Invenio-Files-Rest provides also the functionality to serve your files directly
from your external storage. This is achieved by attaching the
X-Accel-Redirect [https://www.nginx.com/resources/wiki/start/topics/examples/x-accel/]
header to the response, which will then be redirected by
your Web Proxy (e.g. NGINX, Apache) to your external storage, finally streaming
the file directly to the user.
To use this feature you will need to configure your Web Proxy accordingly and
then enable the
invenio_files_rest.config.FILES_REST_XSENDFILE_ENABLED.

API Reference

Default Location

Create a bucket:

POST /files/

Buckets

Check if bucket exists, returning either a 200 or 404:

HEAD /files/<bucket_id>

Retrieve the latest version of all objects in bucket:

GET /files/<bucket_id>

Retrieve all versions of files in a bucket:

GET /files/<bucket_id>?versions

Return list of multipart uploads:

GET /files/<bucket_id>?uploads

ObjectVersions

Initiate multipart upload (see Multipart Upload):

POST /files/<bucket_id>/<file_name>?
 uploads&size=<total_size>&partSize=<part_size>

Finalize multipart upload:

POST /files/<bucket_id>/<file_name>?uploadId=<upload_id>

Upload a file to a bucket:

PUT /files/<bucket_id>/<file_name>

Upload part of in-progress multipart upload to a bucket:

PUT /files/<bucket_id>/<file_name>?uploadId=<upload_id>&part=<part_number>

Retrieve the latest version of a given file. By default, the file is returned
with the header 'Content-Disposition': 'inline'. Be aware that the
browser will try to preview it.

GET /files/<bucket_id>/<file_name>

Download the latest version of a given file. It will return the same response
as the request above but with the response header
'Content-Disposition': 'attachment' to instruct the browser
trigger a download.

GET /files/<bucket_id>/<file_name>?download

Retrieve a specific version of a given file:

GET /files/<bucket_id>/<file_name>?versionId=<version_id>

Retrieve the list of parts of a multipart upload:

GET /files/<bucket_id>/<file_name>?uploadId=<id_number>

Mark an object as deleted (see Deleting files):

DELETE /files/<bucket_id>/<file_name>

Permanently erase an object and the physical file on disk:

DELETE /files/<bucket_id>/<file_name>?versionId=<version_id>

Abort multipart upload:

DELETE /files/<bucket_id>/<file_name>?uploadId=<upload_id>

Deleting files

A delete operation can be of two types:

	mark an object as deleted, allowing the possibility of restoring
a deleted file (also called delete marker or soft deletion).

	permanently remove any trace of an object and referenced file
on disk (also called hard deletion).

Soft deletion

Technically, it creates a new ObjectVersion, that becomes the new head,
with no reference to a FileInstance. It is possible to revert it
by getting the previous version.

This operation will not access to the file on disk and it will leave it
untouched.

You can soft delete using REST APIs:

DELETE /files/<bucket_id>/<file_name>

Hard deletion

Given a specific object version, it will delete the ObjectVersion,
the referenced FileInstance and the file on disk. If the deleted version
was the head, it will then set the previous object
as the new head.

The deletion of files on disk will not happen immediately. This is because
it is done via an asynchronous task to ensure that the FileInstance is
safely removed from the database in case the low level operation of file
removal on disk fails for any unexpected reason.

You can hard delete a file using REST APIs:

DELETE /files/<bucket_id>/<file_name>?versionId=<version_id>

REST APIs do not allow to perform delete operations that can affect multiple
objects at the same time. For advanced use cases, you will to use the
Invenio-Files-REST APIs programmatically.

Note

For safety reasons, the deletion will fail if the file that you want
to delete is referenced by multiple ObjectVersions, for example
in case of Buckets snapshots.

Authorization

Invenio-Files-REST relies on Invenio-Access [https://invenio-access.readthedocs.io] to implement files authorization.
The following documentation assumes that you already have knowledge of how
authorization works on Invenio.

Invenio-Files-REST defines a set of actions for operations on Bucket and
ObjectVersions that can be used to implement authorization as you need:

	files-rest-location-update

	files-rest-bucket-read

	files-rest-bucket-read-versions

	files-rest-bucket-update

	files-rest-bucket-listmultiparts

	files-rest-object-read

	files-rest-object-read-version

	files-rest-object-delete

	files-rest-object-delete-version

	files-rest-multipart-read

	files-rest-multipart-delete

Response codes

If the authorization for an action fails, Invenio-Files-REST normally returns
a 403 response code for authenticated users, 401 otherwise.
For security reasons, when trying to retrieve an unauthorized file, it will
return a 404 instead to hide the existence or
non-existence of the file.

Authorization definition

The default permission factory
invenio_files_rest.permissions.permission_factory will authorize
users that has Needs that fulfill the actions listed above. This means
that by default no user will be authorized (with the exception of
any superuser).

Depending on how you are planning to integrate Invenio-Files-REST in your
Invenio application, you might want to decide how to give permissions for
operations on files.

If you plan to give authorization to specific users or roles, you can use the
default permission factory and assign user or roles to the actions listed
above as described in the Invenio-Access documentation.

If instead you want to define permissions based on other object, for example
on records to which the files are attached to, then you will have to
define your own permission factory and used via the configuration variable
invenio_files_rest.config.FILES_REST_PERMISSION_FACTORY.

See invenio_files_rest.permissions for more documentation.

Security

When serving files, you will have to take into account any security
implications. Here you can find some recommendations to mitigate possible
vulnerabilities, such as Cross-Site Scripting (XSS):

	If possible, serve user uploaded files from a separate domain
(not a subdomain).

	By default, Invenio-Files-REST sets some response headers to prevent
the browser from rendering and executing HTML files.
See invenio_files_rest.helpers.send_stream() for more information.

	Prefer file download instead of allowing the browser to preview any file,
by adding the ?download URL query argument

Signals

Invenio-Files-REST supports signals that can be used to react to events.

Events are sent whenever a file is downloaded, uploaded or deleted.

As an example, let’s listen to the file download event:

from invenio_files_rest.signals import file_downloaded

def after_file_downloaded(event, sender_app, obj=None, **kwargs):
 print("File downloaded {0}".format(obj))

listener = file_downloaded.connect(after_file_downloaded)
Request to download a file for the event to trigger

See invenio_files_rest.signals for more documentation.

Integrity

Invenio-Files-REST computes and stores checksums when files are uploaded and it
allows you to set up periodic tasks to regularly re-validate files integrity.

By default, it uses MD5 to compute checksums. You can override this
by subclassing invenio_files_rest.storage.FileStorage.

You can use the tasks invenio_files_rest.tasks.verify_checksum() and
invenio_files_rest.tasks.schedule_checksum_verification() to set up
periodic tasks to perform checksum verifications on single files or batches
and provide reports.

Let’s create a periodic task to compute checksums:

CELERY_BEAT_SCHEDULE = {
 'file-checks': {
 'task': 'invenio_files_rest.tasks.schedule_checksum_verification',
 'schedule': timedelta(hours=1),
 }
}

By default, invenio_files_rest.tasks.schedule_checksum_verification()
will generate batches of files to check using some predefined constraints,
in order to throttle the execution rate of the checks.
It will then spawn a celery task
invenio_files_rest.tasks.verify_checksum() for each of the file in
the set.

You can customize most of these parameters by passing the method arguments
to the schedule definition.

Keep in mind that you need to have celerybeat running.

Storage Backends

Invenio-Files-REST provides a default implementation of storage factory
invenio_files_rest.storage.PyFSFileStorage
used when performing operation on files in the defined locations.
The PyFSFileStorage class uses
PyFilesystem [https://www.pyfilesystem.org/] to access the file system.

Build your own Storage Backend

In order to use a different storage backend, you can implement the
invenio_files_rest.storage.FileStorage interface.

Mandatory methods to implement:

	initialize

	open

	save

	update

	delete

Optional methods to implement:

	send_file

	checksum

	copy

	_init_hash

	_compute_checksum

	_write_stream

Then, you will have to re-implement a storage factory in a similar way as the
default invenio_files_rest.storage.pyfs_storage_factory() and
set configuration variable
invenio_files_rest.config.FILES_REST_STORAGE_FACTORY.

JS Uploaders

Some JS uploaders do not allow you to customize the HTTP request that is
sent to the REST APIs when uploading a file. If the default implementation
provided by Invenio-Files-REST is not compatible, you will have to
implement your own custom factory to adapt the JS uploader request to
Invenio-Files-REST.

When using the AngularJS uploader
ng-file-upload [https://github.com/danialfarid/ng-file-upload],
Invenio-Files-REST already provides a compatible factory,
invenio_files_rest.views.ngfileupload_uploadfactory().

If you have to create a new custom factory, you have to:

	Create your own factory similar to
invenio_files_rest.views.ngfileupload_uploadfactory().

2. Instruct Invenio-Files-REST to use it by setting the configuration variables
invenio_files_rest.config.FILES_REST_MULTIPART_PART_FACTORIES and
invenio_files_rest.config.FILES_REST_UPLOAD_FACTORIES

Multipart Upload

You might want to optimize upload in case of large files.
Invenio-Files-REST allows you to upload parts of the same file in parallel
via multiparts uploads.

A multipart upload requires that each part of the file has the
same size, except for the last one that can be smaller.
Each part can be uploaded at the same
time and at the end of the process all parts are merged into one single file.

In case of failure when uploading one of the parts, the operation is completely
aborted and all parts are deleted.

With Invenio-Files-REST, the multipart upload consists of 3 actions:

	An initial request to initiate the upload and obtain an id
to be used for each part upload.

	A series of requests to upload of each part specifying
the part number to correctly merge the file at the end.

	A final request to to merge all parts together.

Let’s see an example. Let’s create an 11 MB file which will then be split
into 2 chunks using the linux split command:

$ dd if=/dev/urandom of=my_file.txt bs=1048576 count=11

$ split -b6291456 my_file.txt segment_

Create a new bucket:

$ curl -X POST http://localhost:5000/api/files

Response:

{
 "max_file_size":null,
 "updated":"2019-05-17T06:52:52.897378+00:00",
 "locked":false,
 "links":{
 "self":"http://localhost:5000/api/files/
 c896d17b-0e7d-44b3-beba-7e43b0b1a7a4",
 "uploads":"http://localhost:5000/api/files/
 c896d17b-0e7d-44b3-beba-7e43b0b1a7a4?uploads",
 "versions":"http://localhost:5000/api/files/
 c896d17b-0e7d-44b3-beba-7e43b0b1a7a4?versions"
 },
 "created":"2019-05-17T06:52:52.897373+00:00",
 "quota_size":null,
 "id":"c896d17b-0e7d-44b3-beba-7e43b0b1a7a4",
 "size":0
}

Now, let’s initiate the multipart upload. Notice the URL query argument
that specify total size and each part size:

$ B=c896d17b-0e7d-44b3-beba-7e43b0b1a7a4

$ curl -i -X POST \
 "http://localhost:5000/api/files/$B/my_file.txt?
 uploads&size=11534336&partSize=6291456"

Notice the upload id in the response:

{
 "updated":"2019-05-17T07:07:22.219002+00:00",
 "links":{
 "self":"http://localhost:5000/api/files/
 c896d17b-0e7d-44b3-beba-7e43b0b1a7a4/my_file.txt?
 uploadId=a85b1cbd-4080-4c81-a95c-b4df5d1b615f",

 "object":"http://localhost:5000/api/files/
 c896d17b-0e7d-44b3-beba-7e43b0b1a7a4/my_file.txt",

 "bucket":"http://localhost:5000/api/files/
 c896d17b-0e7d-44b3-beba-7e43b0b1a7a4"
 },
 "last_part_size":5242880,
 "created":"2019-05-17T07:07:22.218998+00:00",
 "bucket":"c896d17b-0e7d-44b3-beba-7e43b0b1a7a4",
 "completed":false,
 "part_size":6291456,
 "key":"my_file.txt",
 "last_part_number":1,
 "id":"a85b1cbd-4080-4c81-a95c-b4df5d1b615f",
 "size":11534336
}

Now, let’s upload each part in parallel. Notice the uploadId and
partNumber URL query arguments:

$ U=a85b1cbd-4080-4c81-a95c-b4df5d1b615f

$ curl -i -X PUT --data-binary @segment_aa \
 "http://localhost:5000/api/files/$B/my_file.txt?uploadId=$U&partNumber=0"

$ curl -i -X PUT --data-binary @segment_ab \
 "http://localhost:5000/api/files/$B/my_file.txt?uploadId=$U&partNumber=1"

Complete the multipart upload:

$ curl -i -X POST \
 "http://localhost:5000/api/files/$B/my_file.txt?uploadId=$U"

You can also abort a multipart upload (and delete all uploaded parts):

$ curl -i -X DELETE \
 "http://localhost:5000/api/files/$B/my_file.txt?uploadId=$U"

Multiparts uploads limits can be controlled via configuration variables:

	Set invenio_files_rest.config.FILES_REST_MULTIPART_MAX_PARTS
to limit the maximum number of parts for a single multipart upload.

	Set invenio_files_rest.config.FILES_REST_MULTIPART_CHUNKSIZE_MIN
to define the minimum size of each part.

	Set invenio_files_rest.config.FILES_REST_MULTIPART_CHUNKSIZE_MAX
to define the maximum size of each part.

	Set invenio_files_rest.config.FILES_REST_MULTIPART_EXPIRES
to define the maximum number of days for which a multipart upload is
considered valid and accepts new part uploads.

Large Files

By default, Flask and your web server have a limit on the maximum size of the
upload files. Normally, when the max size is exceeded, the server will return
a response code 413 (Request Entity Too Large).

You can adjust these configurations according to your needs.

For Flask, specify MAX_CONTENT_LENGTH configuration variable.
Be aware that if the request does not specify a CONTENT_LENGTH,
no data will be read. To change the max size, you can for example:

$ app.config['MAX_CONTENT_LENGTH'] = 25 * 1024 * 1024

Here is an example for Nginx web server. If you are using another web server,
please check the related documentation.

http {
 ...
 client_max_body_size 25M;
}

Data Migration

When you already have an instance running with a certain amount of uploaded
data, you might have the need to migrate the data to a different, larger or
more efficient physical location. It can involve your entire set of files or
just a part of it.

Note that files migration can be performed with no downtime and in a
completely transparent way for the user.

The steps to perform a complete migration are the followings:

	Create the new Location in the database with the URI of your
new location and set it to default = True. In this way, new
Buckets will use the new default location.

	Change all existing buckets locations in the database to the new one.
By doing this, any new file uploaded to the existing bucket will be stored
in the new location.

	For each FileInstance, run the asynchronous task
invenio_files_rest.tasks.migrate_file() passing the new location.

The asynchronous task invenio_files_rest.tasks.migrate_file()
will create a new FileInstance and copy the file content to the
new location. It will then change each ObjectVersion that have
a reference to the old FileInstance to reference the new
FileInstance and eventually run an integrity check.

API Docs

Files download/upload REST API similar to S3 for Invenio.

	
class invenio_files_rest.ext.InvenioFilesREST(app=None)

	Invenio-Files-REST extension.

Extension initialization.

	
init_app(app)

	Flask application initialization.

	
init_config(app)

	Initialize configuration.

Models

Models for Invenio-Files-REST.

The entities of this module consists of:

	Buckets - Identified by UUIDs, and contains objects.

	Buckets tags - Identified uniquely with a bucket by a key. Used to store
extra metadata for a bucket.

	Objects - Identified uniquely within a bucket by string keys. Each
object can have multiple object versions (note: Objects do not have their
own database table).

	Object versions - Identified by UUIDs and belongs to one specific object
in one bucket. Each object version has zero or one file instance. If the
object version has no file instance, it is considered a delete marker.

	File instance - Identified by UUIDs. Represents a physical file on disk.
The location of the file is specified via a URI. A file instance can have
many object versions.

	Locations - A bucket belongs to a specific location. Locations can be
used to represent e.g. different storage systems.

	Multipart Objects - Identified by UUIDs and belongs to a specific bucket
and key.

	Part object - Identified by their multipart object and a part number.

The actual file access is handled by a storage interface. Also, objects do not
have their own model, but are represented via the ObjectVersion
model.

	
class invenio_files_rest.models.Bucket(**kwargs)

	Model for storing buckets.

A bucket is a container of objects. Buckets have a default location and
storage class. Individual objects in the bucket can however have different
locations and storage classes.

A bucket can be marked as deleted. A bucket can also be marked as locked
to prevent operations on the bucket.

Each bucket can also define a quota. The size of a bucket is the size
of all objects in the bucket (including all versions).

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
classmethod all()

	Return query of all buckets (excluding deleted).

	
classmethod create(location=None, storage_class=None, **kwargs)

	Create a bucket.

	Parameters

	
	location – Location of a bucket (instance or name).
Default: Default location.

	storage_class – Storage class of a bucket.
Default: Default storage class.

	**kwargs – Keyword arguments are forwarded to the class

	**kwargs – Keyword arguments are forwarded to the class
constructor.

	Returns

	Created bucket.

	
created

	Creation timestamp.

	
default_location

	Default location.

	
default_storage_class

	Default storage class.

	
classmethod delete(bucket_id)

	Delete a bucket.

Does not actually delete the Bucket, just marks it as deleted.

	
deleted

	Delete state of bucket.

	
classmethod get(bucket_id)

	Get a bucket object (excluding deleted).

	Parameters

	bucket_id – Bucket identifier.

	Returns

	Bucket instance.

	
get_tags()

	Get tags for bucket as dictionary.

	
id

	Bucket identifier.

	
location

	Location associated with this bucket.

	
locked

	Lock state of bucket.

Modifications are not allowed on a locked bucket.

	
max_file_size

	Maximum size of a single file in the bucket.

Usage of this property depends on which file size limiters are installed.

	
property quota_left

	Get how much space is left in the bucket.

	
quota_size

	Quota size of bucket.

Usage of this property depends on which file size limiters are installed.

	
remove()

	Permanently remove a bucket and all objects (including versions).

Warning

This by-passes the normal versioning and should only be used when
you want to permanently delete a bucket and its objects. Otherwise
use Bucket.delete().

Note the method does not remove the associated file instances which
must be garbage collected.

	Returns

	self.

	
size

	Size of bucket.

This is a computed property which can rebuilt any time from the objects
inside the bucket.

	
property size_limit

	Get size limit for this bucket.

The limit is based on the minimum output of the file size limiters.

	
snapshot(lock=False)

	Create a snapshot of latest objects in bucket.

	Parameters

	lock – Create the new bucket in a locked state.

	Returns

	Newly created bucket containing copied ObjectVersion.

	
sync(bucket, delete_extras=False)

	Sync self bucket ObjectVersions to the destination bucket.

The bucket is fully mirrored with the destination bucket following the
logic:

	same ObjectVersions are not touched

	new ObjectVersions are added to destination

	deleted ObjectVersions are deleted in destination

	extra ObjectVersions in dest are deleted if delete_extras param is
True

	Parameters

	
	bucket – The destination bucket.

	delete_extras – Delete extra ObjectVersions in destination if
True.

	Returns

	The bucket with an exact copy of ObjectVersions in self.

	
updated

	Modification timestamp.

	
validate_storage_class(key, default_storage_class)

	Validate storage class.

	
class invenio_files_rest.models.BucketTag(**kwargs)

	Model for storing tags associated to buckets.

This is useful to store extra information for a bucket.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
bucket

	Relationship to buckets.

	
classmethod create(bucket, key, value)

	Create a new tag for bucket.

	
classmethod create_or_update(bucket, key, value)

	Create or update a new tag for bucket.

	
classmethod delete(bucket, key)

	Delete a tag.

	
classmethod get(bucket, key)

	Get tag object.

	
classmethod get_value(bucket, key)

	Get tag value.

	
key

	Tag key.

	
value

	Tag value.

	
class invenio_files_rest.models.FileInstance(**kwargs)

	Model for storing files.

A file instance represents a file on disk. A file instance may be linked
from many objects, while an object can have one and only one file instance.

A file instance also records the storage class, size and checksum of the
file on disk.

Additionally, a file instance can be read only in case the storage layer
is not capable of writing to the file (e.g. can typically be used to
link to files on externally controlled storage).

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
checksum

	String representing the checksum of the object.

	
clear_last_check()

	Clear the checksum of the file.

	
copy_contents(fileinstance, progress_callback=None, chunk_size=None, **kwargs)

	Copy this file instance into another file instance.

	
classmethod create()

	Create a file instance.

Note, object is only added to the database session.

	
created

	Creation timestamp.

	
delete()

	Delete a file instance.

The file instance can be deleted if it has no references from other
objects. The caller is responsible to test if the file instance is
writable and that the disk file can actually be removed.

Note

Normally you should use the Celery task to delete a file instance,
as this method will not remove the file on disk.

	
classmethod get(file_id)

	Get a file instance.

	
classmethod get_by_uri(uri)

	Get a file instance by URI.

	
id

	Identifier of file.

	
init_contents(size=0, **kwargs)

	Initialize file.

	
last_check

	Result of last fixity check.

	
last_check_at

	Timestamp of last fixity check.

	
readable

	Defines if the file is read only.

	
send_file(filename, restricted=True, mimetype=None, trusted=False, chunk_size=None, as_attachment=False, **kwargs)

	Send file to client.

	
set_contents(stream, chunk_size=None, size=None, size_limit=None, progress_callback=None, **kwargs)

	Save contents of stream to this file.

	Parameters

	
	obj – ObjectVersion instance from where this file is accessed
from.

	stream – File-like stream.

	
set_uri(uri, size, checksum, readable=True, writable=False, storage_class=None)

	Set a location of a file.

	
size

	Size of file.

	
storage(**kwargs)

	Get storage interface for object.

Uses the applications storage factory to create a storage interface
that can be used for this particular file instance.

	Returns

	Storage interface.

	
storage_class

	Storage class of file.

	
update_checksum(progress_callback=None, chunk_size=None, checksum_kwargs=None, **kwargs)

	Update checksum based on file.

	
update_contents(stream, seek=0, size=None, chunk_size=None, progress_callback=None, **kwargs)

	Save contents of stream to this file.

	Parameters

	
	obj – ObjectVersion instance from where this file is accessed
from.

	stream – File-like stream.

	
updated

	Modification timestamp.

	
uri

	Location of file.

	
validate_uri(key, uri)

	Validate uri.

	
verify_checksum(progress_callback=None, chunk_size=None, throws=True, checksum_kwargs=None, **kwargs)

	Verify checksum of file instance.

	Parameters

	
	throws (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, exceptions raised during checksum
calculation will be re-raised after logging. If set to False, and
an exception occurs, the last_check field is set to None
(last_check_at of course is updated), since no check actually was
performed.

	checksum_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passed as **kwargs` to
storage().checksum.

	
writable

	Defines if file is writable.

This property is used to create a file instance prior to having the actual
file at the given URI. This is useful when e.g. copying a file instance.

	
class invenio_files_rest.models.Location(**kwargs)

	Model defining base locations.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
classmethod all()

	Return query that fetches all locations.

	
created

	Creation timestamp.

	
default

	True if the location is the default location.

At least one location should be the default location.

	
classmethod get_by_name(name)

	Fetch a specific location object.

	
classmethod get_default()

	Fetch the default location object.

	
id

	Internal identifier for locations.

The internal identifier is used only used as foreign key for buckets in
order to decrease storage requirements per row for buckets.

	
name

	External identifier of the location.

	
updated

	Modification timestamp.

	
uri

	URI of the location.

	
validate_name(key, name)

	Validate name.

	
class invenio_files_rest.models.MultipartObject(**kwargs)

	Model for storing files in chunks.

A multipart object belongs to a specific bucket and key and is identified
by an upload id. You can have multiple multipart uploads for the same
bucket and key. Once all parts of a multipart object is uploaded, the state
is changed to completed. Afterwards it is not possible to upload
new parts. Once completed, the multipart object is merged, and added as
a new version in the current object/bucket.

All parts for a multipart upload must be of the same size, except for the
last part.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
bucket

	Relationship to buckets.

	
bucket_id

	Bucket identifier.

	
chunk_size

	Size of chunks for file.

	
complete()

	Mark a multipart object as complete.

	
completed

	Defines if object is the completed.

	
classmethod create(bucket, key, size, chunk_size)

	Create a new object in a bucket.

	
created

	Creation timestamp.

	
delete()

	Delete a multipart object.

	
expected_part_size(part_number)

	Get expected part size for a particular part number.

	
file

	Relationship to buckets.

	
file_id

	File instance for this multipart object.

	
classmethod get(bucket, key, upload_id, with_completed=False)

	Fetch a specific multipart object.

	
static is_valid_chunksize(chunk_size)

	Check if size is valid.

	
static is_valid_size(size, chunk_size)

	Validate max theoretical size.

	
key

	Key identifying the object.

	
property last_part_number

	Get last part number.

	
property last_part_size

	Get size of last part.

	
merge_parts(version_id=None, **kwargs)

	Merge parts into object version.

	
classmethod query_by_bucket(bucket)

	Query all uncompleted multipart uploads.

	
classmethod query_expired(dt, bucket=None)

	Query all uncompleted multipart uploads.

	
size

	Size of file.

	
updated

	Modification timestamp.

	
upload_id

	Identifier for the specific version of an object.

	
validate_key(key, key_)

	Validate key.

	
class invenio_files_rest.models.ObjectVersion(**kwargs)

	Model for storing versions of objects.

A bucket stores one or more objects identified by a key. Each object is
versioned where each version is represented by an ObjectVersion.

An object version can either be 1) a normal version which is linked to
a file instance, or 2) a delete marker, which is not linked to a file
instance.

An normal object version is linked to a physical file on disk via a file
instance. This allows for multiple object versions to point to the same
file on disk, to optimize storage efficiency (e.g. useful for snapshotting
an entire bucket without duplicating the files).

A delete marker object version represents that the object at hand was
deleted.

The latest version of an object is marked using the is_head property.
If the latest object version is a delete marker the object will not be
shown in the bucket.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
property basename

	Return filename of the object.

	
bucket

	Relationship to buckets.

	
bucket_id

	Bucket identifier.

	
copy(bucket=None, key=None)

	Copy an object version to a given bucket + object key.

The copy operation is handled completely at the metadata level. The
actual data on disk is not copied. Instead, the two object versions
will point to the same physical file (via the same FileInstance).

All the tags associated with the current object version are copied over
to the new instance.

Warning

If the destination object exists, it will be replaced by the new
object version which will become the latest version.

	Parameters

	
	bucket – The bucket (instance or id) to copy the object to.
Default: current bucket.

	key – Key name of destination object.
Default: current object key.

	Returns

	The copied object version.

	
classmethod create(bucket, key, _file_id=None, stream=None, mimetype=None, version_id=None, **kwargs)

	Create a new object in a bucket.

The created object is by default created as a delete marker. You must
use set_contents() or set_location() in order to change this.

	Parameters

	
	bucket – The bucket (instance or id) to create the object in.

	key – Key of object.

	_file_id – For internal use.

	stream – File-like stream object. Used to set content of object
immediately after being created.

	mimetype – MIME type of the file object if it is known.

	kwargs – Keyword arguments passed to Object.set_contents().

	
created

	Creation timestamp.

	
classmethod delete(bucket, key)

	Delete an object.

Technically works by creating a new version which works as a delete
marker.

	Parameters

	
	bucket – The bucket (instance or id) to delete the object from.

	key – Key of object.

	Returns

	Created delete marker object if key exists else None.

	
property deleted

	Determine if object version is a delete marker.

	
file

	Relationship to file instance.

	
file_id

	File instance for this object version.

A null value in this column defines that the object has been deleted.

	
classmethod get(bucket, key, version_id=None)

	Fetch a specific object.

By default the latest object version is returned, if
version_id is not set.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.

	key – Key of object.

	version_id – Specific version of an object.

	
classmethod get_by_bucket(bucket, versions=False, with_deleted=False)

	Return query that fetches all the objects in a bucket.

	Parameters

	
	bucket – The bucket (instance or id) to query.

	versions – Select all versions if True, only heads otherwise.

	with_deleted – Select also deleted objects if True.

	Returns

	The query to retrieve filtered objects in the given bucket.

	
get_tags()

	Get tags for object version as dictionary.

	
classmethod get_versions(bucket, key, desc=True)

	Fetch all versions of a specific object.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.

	key – Key of object.

	desc – Sort results desc if True, asc otherwise.

	Returns

	The query to execute to fetch all versions.

	
is_head

	Defines if object is the latest version.

	
classmethod ix_uq_partial_files_object_is_head_dll()

	Return DDL instruction for ix_uq_partial_files_object_is_head.

	
key

	Key identifying the object.

	
mimetype

	Get MIME type of object.

	
classmethod relink_all(old_file, new_file)

	Relink all object versions (for a given file) to a new file.

Warning

Use this method with great care.

	
remove()

	Permanently remove a specific object version from the database.

Warning

This by-passes the normal versioning and should only be used when
you want to permanently delete a specific object version. Otherwise
use ObjectVersion.delete().

Note the method does not remove the associated file instance which
must be garbage collected.

	Returns

	self.

	
restore()

	Restore this object version to become the latest version.

Raises an exception if the object is the latest version.

	
send_file(restricted=True, trusted=False, **kwargs)

	Wrap around FileInstance’s send file.

	
set_contents(stream, chunk_size=None, size=None, size_limit=None, progress_callback=None)

	Save contents of stream to file instance.

If a file instance has already been set, this methods raises an
FileInstanceAlreadySetError exception.

	Parameters

	
	stream – File-like stream.

	size – Size of stream if known.

	chunk_size – Desired chunk size to read stream in. It is up to
the storage interface if it respects this value.

	
set_file(fileinstance)

	Set a file instance.

	
set_location(uri, size, checksum, storage_class=None)

	Set only URI location of for object.

Useful to link files on externally controlled storage. If a file
instance has already been set, this methods raises an
FileInstanceAlreadySetError exception.

	Parameters

	
	uri – Full URI to object (which can be interpreted by the storage
interface).

	size – Size of file.

	checksum – Checksum of file.

	storage_class – Storage class where file is stored ()

	
updated

	Modification timestamp.

	
validate_key(key, key_)

	Validate key.

	
version_id

	Identifier for the specific version of an object.

	
class invenio_files_rest.models.ObjectVersionTag(**kwargs)

	Model for storing tags associated to object versions.

Used for storing extra technical information for an object version.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
copy(object_version=None, key=None)

	Copy a tag to a given object version.

	Parameters

	
	object_version – The object version instance to copy the tag to.
Default: current object version.

	key – Key of destination tag.
Default: current tag key.

	Returns

	The copied object version tag.

	
classmethod create(object_version, key, value)

	Create a new tag for a given object version.

	
classmethod create_or_update(object_version, key, value)

	Create or update a new tag for a given object version.

	
classmethod delete(object_version, key=None)

	Delete tags.

	Parameters

	
	object_version – The object version instance or id.

	key – Key of the tag to delete.
Default: delete all tags.

	
classmethod get(object_version, key)

	Get the tag object.

	
classmethod get_value(object_version, key)

	Get the tag value.

	
key

	Tag key.

	
object_version

	Relationship to object versions.

	
value

	Tag value.

	
version_id

	Object version id.

	
class invenio_files_rest.models.Part(**kwargs)

	Part object.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
checksum

	String representing the checksum of the part.

	
classmethod count(mp)

	Count number of parts for a given multipart object.

	
classmethod create(mp, part_number, stream=None, **kwargs)

	Create a new part object in a multipart object.

	
created

	Creation timestamp.

	
classmethod delete(mp, part_number)

	Get part number.

	
property end_byte

	Get end byte in file for this part.

	
classmethod get_or_create(mp, part_number)

	Get or create a part.

	
classmethod get_or_none(mp, part_number)

	Get part number.

	
multipart

	Relationship to multipart objects.

	
part_number

	Part number.

	
property part_size

	Get size of this part.

	
classmethod query_by_multipart(multipart)

	Get all parts for a specific multipart upload.

	Parameters

	multipart – A invenio_files_rest.models.MultipartObject
instance.

	Returns

	A invenio_files_rest.models.Part instance.

	
set_contents(stream, progress_callback=None)

	Save contents of stream to part of file instance.

If a the MultipartObject is completed this methods raises an
MultipartAlreadyCompleted exception.

	Parameters

	
	stream – File-like stream.

	size – Size of stream if known.

	chunk_size – Desired chunk size to read stream in. It is up to
the storage interface if it respects this value.

	
property start_byte

	Get start byte in file of this part.

	
updated

	Modification timestamp.

	
upload_id

	Multipart object identifier.

Storage

File storage interface.

	
class invenio_files_rest.storage.FileStorage(size=None, modified=None)

	Base class for storage interface to a single file.

Initialize storage object.

	
checksum(chunk_size=None, progress_callback=None, **kwargs)

	Compute checksum of file.

	
copy(src, chunk_size=None, progress_callback=None)

	Copy data from another file instance.

	Parameters

	
	src – Source stream.

	chunk_size – Chunk size to read from source stream.

	
delete()

	Delete the file.

	
initialize(size=0)

	Initialize the file on the storage + truncate to the given size.

	
open(mode=None)

	Open the file.

The caller is responsible for closing the file.

	
save(incoming_stream, size_limit=None, size=None, chunk_size=None, progress_callback=None)

	Save incoming stream to file storage.

	
send_file(filename, mimetype=None, restricted=True, checksum=None, trusted=False, chunk_size=None, as_attachment=False)

	Send the file to the client.

	
update(incoming_stream, seek=0, size=None, chunk_size=None, progress_callback=None)

	Update part of file with incoming stream.

	
class invenio_files_rest.storage.PyFSFileStorage(fileurl, size=None, modified=None, clean_dir=True)

	File system storage using PyFilesystem for access the file.

This storage class will store files according to the following pattern:
<base_uri>/<file instance uuid>/data.

Warning

File operations are not atomic. E.g. if errors happens during e.g.
updating part of a file it will leave the file in an inconsistent
state. The storage class tries as best as possible to handle errors
and leave the system in a consistent state.

Storage initialization.

	
delete()

	Delete a file.

The base directory is also removed, as it is assumed that only one file
exists in the directory.

	
initialize(size=0)

	Initialize file on storage and truncate to given size.

	
open(mode='rb')

	Open file.

The caller is responsible for closing the file.

	
save(incoming_stream, size_limit=None, size=None, chunk_size=None, progress_callback=None)

	Save file in the file system.

	
update(incoming_stream, seek=0, size=None, chunk_size=None, progress_callback=None)

	Update a file in the file system.

	
invenio_files_rest.storage.pyfs_storage_factory(fileinstance=None, default_location=None, default_storage_class=None, filestorage_class=<class 'invenio_files_rest.storage.pyfs.PyFSFileStorage'>, fileurl=None, size=None, modified=None, clean_dir=True)

	Get factory function for creating a PyFS file storage instance.

Signals

Models for Invenio-Files-REST.

	
invenio_files_rest.signals.file_deleted = <blinker.base.NamedSignal object at 0x7f259b330890; 'file-deleted'>

	File deleted signal.

Sent when a file is deleted.

	
invenio_files_rest.signals.file_downloaded = <blinker.base.NamedSignal object at 0x7f259b3306d0; 'file-downloaded'>

	File downloaded signal.

Sent when a file is downloaded.

	
invenio_files_rest.signals.file_uploaded = <blinker.base.NamedSignal object at 0x7f259b330850; 'file-uploaded'>

	File uploaded signal.

Sent when a file is uploaded.

File streaming

File serving helpers for Files REST API.

	
invenio_files_rest.helpers.MIMETYPE_WHITELIST = {'audio/mpeg', 'audio/ogg', 'audio/wav', 'audio/webm', 'image/gif', 'image/jpeg', 'image/png', 'image/tiff', 'text/plain'}

	List of whitelisted MIME types.

Warning

Do not add new types to this list unless you know what you are doing. You
could potentially open up for XSS attacks.

	
invenio_files_rest.helpers.chunk_size_or_default(chunk_size)

	Use default chunksize if not configured.

	
invenio_files_rest.helpers.compute_checksum(stream, algo, message_digest, chunk_size=None, progress_callback=None)

	Get helper method to compute checksum from a stream.

	Parameters

	
	stream – File-like object.

	algo – Identifier for checksum algorithm.

	messsage_digest – A message digest instance.

	chunk_size – Read at most size bytes from the file at a time.

	progress_callback – Function accepting one argument with number
of bytes read. (Default: None)

	Returns

	The checksum.

	
invenio_files_rest.helpers.compute_md5_checksum(stream, **kwargs)

	Get helper method to compute MD5 checksum from a stream.

	Parameters

	stream – The input stream.

	Returns

	The MD5 checksum.

	
invenio_files_rest.helpers.create_file_streaming_redirect_response(obj)

	Redirect response generating function.

	
invenio_files_rest.helpers.make_path(base_uri, path, filename, path_dimensions, split_length)

	Generate a path as base location for file instance.

	Parameters

	
	base_uri – The base URI.

	path – The relative path.

	path_dimensions – Number of chunks the path should be split into.

	split_length – The length of any chunk.

	Returns

	A string representing the full path.

	
invenio_files_rest.helpers.populate_from_path(bucket, source, checksum=True, key_prefix='', chunk_size=None)

	Populate a bucket from all files in path.

	Parameters

	
	bucket – The bucket (instance or id) to create the object in.

	source – The file or directory path.

	checksum – If True then a MD5 checksum will be computed for each
file. (Default: True)

	key_prefix – The key prefix for the bucket.

	chunk_size – Chunk size to read from file.

	Returns

	A iterator for all
invenio_files_rest.models.ObjectVersion instances.

	
invenio_files_rest.helpers.sanitize_mimetype(mimetype, filename=None)

	Sanitize a MIME type so the browser does not render the file.

	
invenio_files_rest.helpers.send_stream(stream, filename, size, mtime, mimetype=None, restricted=True, as_attachment=False, etag=None, content_md5=None, chunk_size=None, conditional=True, trusted=False)

	Send the contents of a file to the client.

Warning

It is very easy to be exposed to Cross-Site Scripting (XSS) attacks if
you serve user uploaded files. Here are some recommendations:

	Serve user uploaded files from a separate domain
(not a subdomain). This way a malicious file can only attack
other user uploaded files.

	Prevent the browser from rendering and executing HTML files (by
setting trusted=False).

	Force the browser to download the file as an attachment
(as_attachment=True).

	Parameters

	
	stream – The file stream to send.

	filename – The file name.

	size – The file size.

	mtime – A Unix timestamp that represents last modified time (UTC).

	mimetype – The file mimetype. If None, the module will try to
guess. (Default: None)

	restricted – If the file is not restricted, the module will set the
cache-control. (Default: True)

	as_attachment – If the file is an attachment. (Default: False)

	etag – If defined, it will be set as HTTP E-Tag.

	content_md5 – If defined, a HTTP Content-MD5 header will be set.

	chunk_size – The chunk size.

	conditional – Make the response conditional to the request.
(Default: True)

	trusted – Do not enable this option unless you know what you are
doing. By default this function will send HTTP headers and MIME types
that prevents your browser from rendering e.g. a HTML file which could
contain a malicious script tag.
(Default: False)

	Returns

	A Flask response instance.

Tasks

Celery tasks for Invenio-Files-REST.

	
invenio_files_rest.tasks.clear_orphaned_files(force_delete_check=<function <lambda> at 0x7f259a939a70>, limit=1000)

	Delete orphaned files from DB and storage.

Note

Orphan files are files
(invenio_files_rest.models.FileInstance objects and their
on-disk counterparts) that do not have any
invenio_files_rest.models.ObjectVersion objects associated
with them (anymore).

The celery beat configuration for scheduling this task may set values for
this task’s parameters:

"clear-orphan-files": {
 "task": "invenio_files_rest.tasks.clear_orphaned_files",
 "schedule": 60 * 60 * 24,
 "kwargs": {
 "force_delete_check": lambda file: False,
 "limit": 500,
 }
}

	Parameters

	
	force_delete_check – A function to be called on each orphan file instance
to check if its deletion should be forced (bypass the
check of its writable flag).
For example, this function can be used to force-delete
files only if they are located on the local file system.
Signature: The function should accept a
invenio_files_rest.models.FileInstance object
and return a boolean value.
Default: Never force-delete any orphan files
(lambda file_instance: False).

	limit – Limit for the number of orphan files considered for deletion in each
task execution (and thus the number of generated celery tasks).
A value of zero (0) or lower disables the limit.

	
invenio_files_rest.tasks.default_checksum_verification_files_query()

	Return a query of valid FileInstances for checksum verification.

	
invenio_files_rest.tasks.merge_multipartobject(upload_id, version_id=None)

	Merge multipart object.

	Parameters

	
	upload_id – The invenio_files_rest.models.MultipartObject
upload ID.

	version_id – Optionally you can define which file version.
(Default: None)

	Returns

	The invenio_files_rest.models.ObjectVersion version
ID.

	
invenio_files_rest.tasks.migrate_file(src_id, location_name, post_fixity_check=False)

	Task to migrate a file instance to a new location.

Note

If something goes wrong during the content copy, the destination
file instance is removed.

	Parameters

	
	src_id – The invenio_files_rest.models.FileInstance ID.

	location_name – Where to migrate the file.

	post_fixity_check – Verify checksum after migration.
(Default: False)

	
invenio_files_rest.tasks.progress_updater(size, total)

	Progress reporter for checksum verification.

	
invenio_files_rest.tasks.remove_expired_multipartobjects()

	Remove expired multipart objects.

	
invenio_files_rest.tasks.remove_file_data(file_id, silent=True, force=False)

	Remove file instance and associated data.

	Parameters

	
	file_id – The invenio_files_rest.models.FileInstance ID.

	silent – It stops propagation of a possible raised IntegrityError
exception. (Default: True)

	force – Whether to delete the file even if the file instance is not
marked as writable.

	Raises

	sqlalchemy.exc.IntegrityError [https://docs.sqlalchemy.org/en/20/core/exceptions.html#sqlalchemy.exc.IntegrityError] – Raised if the database removal goes
wrong and silent is set to False.

	
invenio_files_rest.tasks.schedule_checksum_verification(frequency=None, batch_interval=None, max_count=None, max_size=None, files_query=None, checksum_kwargs=None)

	Schedule a batch of files for checksum verification.

The purpose of this task is to be periodically called through celerybeat,
in order achieve a repeated verification cycle of all file checksums, while
following a set of constraints in order to throttle the execution rate of
the checks.

	Parameters

	
	frequency (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Time period over which a full check of all files
should be performed. The argument is a dictionary that will be passed
as arguments to the datetime.timedelta class. Defaults to a month (30
days).

	batch_interval (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – How often a batch is sent. If not supplied,
this information will be extracted, if possible, from the
celery.conf[‘CELERYBEAT_SCHEDULE’] entry of this task. The argument is
a dictionary that will be passed as arguments to the
datetime.timedelta class.

	max_count (int [https://docs.python.org/3/library/functions.html#int]) – Max count of files of a single batch. When set to 0
it’s automatically calculated to be distributed equally through the
number of total batches.

	max_size (int [https://docs.python.org/3/library/functions.html#int]) – Max size of a single batch in bytes. When set to 0
it’s automatically calculated to be distributed equally through the
number of total batches.

	files_query (str [https://docs.python.org/3/library/stdtypes.html#str]) – Import path for a function returning a
FileInstance query for files that should be checked.

	checksum_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passed to FileInstance.verify_checksum.

	
invenio_files_rest.tasks.verify_checksum(file_id, pessimistic=False, chunk_size=None, throws=True, checksum_kwargs=None)

	Verify checksum of a file instance.

	Parameters

	file_id – The file ID.

Exceptions

Errors for Invenio-Files-REST.

	
exception invenio_files_rest.errors.BucketLockedError(errors=None, **kwargs)

	Exception raised when a bucket is locked.

Initialize RESTException.

	
exception invenio_files_rest.errors.DuplicateTagError(errors=None, **kwargs)

	Invalid tag key and/or value.

Initialize RESTException.

	
exception invenio_files_rest.errors.ExhaustedStreamError(errors=None, **kwargs)

	The incoming file stream has been already consumed.

Initialize RESTException.

	
exception invenio_files_rest.errors.FileInstanceAlreadySetError(errors=None, **kwargs)

	Exception raised when file instance already set on object.

Initialize RESTException.

	
exception invenio_files_rest.errors.FileInstanceUnreadableError(errors=None, **kwargs)

	Exception raised when trying to get an unreadable file.

Initialize RESTException.

	
exception invenio_files_rest.errors.FileSizeError(errors=None, **kwargs)

	Exception raised when a file larger than allowed.

Initialize RESTException.

	
exception invenio_files_rest.errors.FilesException(errors=None, **kwargs)

	Base exception for all errors.

Initialize RESTException.

	
exception invenio_files_rest.errors.InvalidKeyError(errors=None, **kwargs)

	Invalid key.

Initialize RESTException.

	
exception invenio_files_rest.errors.InvalidOperationError(errors=None, **kwargs)

	Exception raised when an invalid operation is performed.

Initialize RESTException.

	
exception invenio_files_rest.errors.InvalidTagError(errors=None, **kwargs)

	Invalid tag key and/or value.

Initialize RESTException.

	
exception invenio_files_rest.errors.MissingQueryParameter(arg_name, **kwargs)

	Exception raised when missing a query parameter.

Initialize RESTException.

	
get_description(environ=None)

	Get the description.

	
exception invenio_files_rest.errors.MultipartAlreadyCompleted(errors=None, **kwargs)

	Exception raised when multipart object is already completed.

Initialize RESTException.

	
exception invenio_files_rest.errors.MultipartException(errors=None, **kwargs)

	Exception for multipart objects.

Initialize RESTException.

	
exception invenio_files_rest.errors.MultipartInvalidChunkSize(errors=None, **kwargs)

	Exception raised when multipart object is already completed.

Initialize RESTException.

	
exception invenio_files_rest.errors.MultipartInvalidPartNumber(errors=None, **kwargs)

	Exception raised when multipart object is already completed.

Initialize RESTException.

	
exception invenio_files_rest.errors.MultipartInvalidSize(errors=None, **kwargs)

	Exception raised when multipart object is already completed.

Initialize RESTException.

	
exception invenio_files_rest.errors.MultipartMissingParts(errors=None, **kwargs)

	Exception raised when multipart object is already completed.

Initialize RESTException.

	
exception invenio_files_rest.errors.MultipartNoPart(errors=None, **kwargs)

	Exception raised by part factories when no part was detected.

Initialize RESTException.

	
exception invenio_files_rest.errors.MultipartNotCompleted(errors=None, **kwargs)

	Exception raised when multipart object is not already completed.

Initialize RESTException.

	
exception invenio_files_rest.errors.StorageError(errors=None, **kwargs)

	Exception raised when a storage operation fails.

Initialize RESTException.

	
get_errors()

	Get errors.

	Returns

	A string with the error message.

	
exception invenio_files_rest.errors.UnexpectedFileSizeError(errors=None, **kwargs)

	Exception raised when a file does not match its expected size.

Initialize RESTException.

Limiters

File size limiting functionality for Invenio-Files-REST.

	
class invenio_files_rest.limiters.FileSizeLimit(limit, reason)

	File size limiter.

Instantiate a new file size limit.

	Parameters

	
	limit – The imposed imposed limit.

	reason – The limit description.

	
invenio_files_rest.limiters.file_size_limiters(bucket)

	Get default file size limiters.

	Parameters

	bucket – The invenio_files_rest.models.Bucket instance.

	Returns

	A list containing an instance of
invenio_files_rest.limiters.FileSizeLimit with quota left
value and description and another one with max file size value and
description.

Permissions

Permissions for files using Invenio-Access.

	
invenio_files_rest.permissions.BucketListMultiparts = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-bucket-listmultiparts')

	Action needed: list multipart uploads in bucket.

	
invenio_files_rest.permissions.BucketRead = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-bucket-read')

	Action needed: list objects in bucket.

	
invenio_files_rest.permissions.BucketReadVersions = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-bucket-read-versions')

	Action needed: list object versions in bucket.

	
invenio_files_rest.permissions.BucketUpdate = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-bucket-update')

	Action needed: create objects and multipart uploads in bucket.

	
invenio_files_rest.permissions.LocationUpdate = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-location-update')

	Action needed: location update.

	
invenio_files_rest.permissions.MultipartDelete = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-multipart-delete')

	Action needed: abort a multipart upload.

	
invenio_files_rest.permissions.MultipartRead = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-multipart-read')

	Action needed: list parts of a multipart upload in a bucket.

	
invenio_files_rest.permissions.ObjectDelete = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-object-delete')

	Action needed: delete object in bucket.

	
invenio_files_rest.permissions.ObjectDeleteVersion = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-object-delete-version')

	Action needed: permanently delete specific object version in bucket.

	
invenio_files_rest.permissions.ObjectRead = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-object-read')

	Action needed: get object in bucket.

	
invenio_files_rest.permissions.ObjectReadVersion = functools.partial(functools.partial(<class 'invenio_access.permissions.Need'>, 'action'), 'files-rest-object-read-version')

	Action needed: get object version in bucket.

	
invenio_files_rest.permissions.bucket_listmultiparts_all = Need(method='action', value='files-rest-bucket-listmultiparts', argument=None)

	Action needed: list all buckets multiparts.

	
invenio_files_rest.permissions.bucket_read_all = Need(method='action', value='files-rest-bucket-read', argument=None)

	Action needed: read all buckets.

	
invenio_files_rest.permissions.bucket_read_versions_all = Need(method='action', value='files-rest-bucket-read-versions', argument=None)

	Action needed: read all buckets versions.

	
invenio_files_rest.permissions.bucket_update_all = Need(method='action', value='files-rest-bucket-update', argument=None)

	Action needed: update all buckets

	
invenio_files_rest.permissions.location_update_all = Need(method='action', value='files-rest-location-update', argument=None)

	Action needed: update all locations.

	
invenio_files_rest.permissions.multipart_delete_all = Need(method='action', value='files-rest-multipart-delete', argument=None)

	Action needed: delete all multiparts.

	
invenio_files_rest.permissions.multipart_read_all = Need(method='action', value='files-rest-multipart-read', argument=None)

	Action needed: read all multiparts.

	
invenio_files_rest.permissions.object_delete_all = Need(method='action', value='files-rest-object-delete', argument=None)

	Action needed: delete all objects.

	
invenio_files_rest.permissions.object_delete_version_all = Need(method='action', value='files-rest-object-delete-version', argument=None)

	Action needed: delete all objects versions.

	
invenio_files_rest.permissions.object_read_all = Need(method='action', value='files-rest-object-read', argument=None)

	Action needed: read all objects.

	
invenio_files_rest.permissions.object_read_version_all = Need(method='action', value='files-rest-object-read-version', argument=None)

	Action needed: read all objects versions.

	
invenio_files_rest.permissions.permission_factory(obj, action)

	Get default permission factory.

	Parameters

	
	obj – An instance of invenio_files_rest.models.Bucket or
invenio_files_rest.models.ObjectVersion or
invenio_files_rest.models.MultipartObject or None if
the action is global.

	action – The required action.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the object is unknown.

	Returns

	A invenio_access.permissions.Permission [https://invenio-access.readthedocs.io/en/latest/api.html#invenio_access.permissions.Permission] instance.

Views

Files download/upload REST API similar to S3 for Invenio.

	
class invenio_files_rest.views.BucketResource(*args, **kwargs)

	Bucket item resource.

Instantiate content negotiated view.

	
get(bucket=None, versions=<marshmallow.missing>, uploads=<marshmallow.missing>)

	Get list of objects in the bucket.

	Parameters

	bucket – A invenio_files_rest.models.Bucket instance.

	Returns

	The Flask response.

	
head(bucket=None, **kwargs)

	Check the existence of the bucket.

	
listobjects(bucket, versions)

	List objects in a bucket.

	Parameters

	bucket – A invenio_files_rest.models.Bucket instance.

	Returns

	The Flask response.

	
methods: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = {'GET', 'HEAD'}

	The methods this view is registered for. Uses the same default
(["GET", "HEAD", "OPTIONS"]) as route and
add_url_rule by default.

	
multipart_listuploads(bucket)

	List objects in a bucket.

	Parameters

	bucket – A invenio_files_rest.models.Bucket instance.

	Returns

	The Flask response.

	
class invenio_files_rest.views.LocationResource(*args, **kwargs)

	Service resource.

Instantiate content negotiated view.

	
methods: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = {'POST'}

	The methods this view is registered for. Uses the same default
(["GET", "HEAD", "OPTIONS"]) as route and
add_url_rule by default.

	
post()

	Create bucket.

	
class invenio_files_rest.views.ObjectResource(*args, **kwargs)

	Object item resource.

Instantiate content negotiated view.

	
static check_object_permission(obj)

	Retrieve object and abort if it doesn’t exists.

	
create_object(bucket, key)

	Create a new object.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.

	key – The file key.

	Returns

	A Flask response.

	
delete(bucket=None, key=None, version_id=None, upload_id=None, uploads=None)

	Delete an object or abort a multipart upload.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.
(Default: None)

	key – The file key. (Default: None)

	version_id – The version ID. (Default: None)

	upload_id – The upload ID. (Default: None)

	Returns

	A Flask response.

	
delete_object(bucket, obj, version_id)

	Delete an existing object.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.

	obj – A invenio_files_rest.models.ObjectVersion
instance.

	version_id – The version ID.

	Returns

	A Flask response.

	
get(bucket=None, key=None, version_id=None, upload_id=None, uploads=None, download=None)

	Get object or list parts of a multipart upload.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.
(Default: None)

	key – The file key. (Default: None)

	version_id – The version ID. (Default: None)

	upload_id – The upload ID. (Default: None)

	download – The download flag. (Default: None)

	Returns

	A Flask response.

	
classmethod get_object(bucket, key, version_id)

	Retrieve object and abort if it doesn’t exist.

If the file is not found, the connection is aborted and the 404
error is returned.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.

	key – The file key.

	version_id – The version ID.

	Returns

	A invenio_files_rest.models.ObjectVersion instance.

	
methods: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = {'DELETE', 'GET', 'POST', 'PUT'}

	The methods this view is registered for. Uses the same default
(["GET", "HEAD", "OPTIONS"]) as route and
add_url_rule by default.

	
multipart_complete(multipart)

	Complete a multipart upload.

	Parameters

	multipart – A invenio_files_rest.models.MultipartObject
instance.

	Returns

	A Flask response.

	
multipart_delete(multipart)

	Abort a multipart upload.

	Parameters

	multipart – A invenio_files_rest.models.MultipartObject
instance.

	Returns

	A Flask response.

	
multipart_init(bucket, key, size=None, part_size=None)

	Initialize a multipart upload.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.

	key – The file key.

	size – The total size.

	part_size – The part size.

	Raises

	invenio_files_rest.errors.MissingQueryParameter – If size or
part_size are not defined.

	Returns

	A Flask response.

	
multipart_listparts(multipart)

	Get parts of a multipart upload.

	Parameters

	multipart – A invenio_files_rest.models.MultipartObject
instance.

	Returns

	A Flask response.

	
multipart_uploadpart(multipart)

	Upload a part.

	Parameters

	multipart – A invenio_files_rest.models.MultipartObject
instance.

	Returns

	A Flask response.

	
post(bucket=None, key=None, uploads=<marshmallow.missing>, upload_id=None)

	Upload a new object or start/complete a multipart upload.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.
(Default: None)

	key – The file key. (Default: None)

	upload_id – The upload ID. (Default: None)

	Returns

	A Flask response.

	
put(bucket=None, key=None, upload_id=None)

	Update a new object or upload a part of a multipart upload.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.
(Default: None)

	key – The file key. (Default: None)

	upload_id – The upload ID. (Default: None)

	Returns

	A Flask response.

	
static send_object(bucket, obj, expected_chksum=None, logger_data=None, restricted=True, as_attachment=False)

	Send an object for a given bucket.

	Parameters

	
	bucket – The bucket (instance or id) to get the object from.

	obj – A invenio_files_rest.models.ObjectVersion
instance.

	logger_data – The python logger.

	kwargs – Keyword arguments passed to Object.send_file()

	Params expected_chksum

	Expected checksum.

	Returns

	A Flask response.

	
invenio_files_rest.views.as_uuid(value)

	Convert value to UUID.

	
invenio_files_rest.views.bucket_view(**kwargs)

	Bucket item resource.

	Parameters

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Union [https://docs.python.org/3/library/typing.html#typing.Union][Headers, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]]]]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], int [https://docs.python.org/3/library/functions.html#int]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], int [https://docs.python.org/3/library/functions.html#int], Union [https://docs.python.org/3/library/typing.html#typing.Union][Headers, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]]]]], WSGIApplication]

	
invenio_files_rest.views.check_permission(permission, hidden=True)

	Check if permission is allowed.

If permission fails then the connection is aborted.

	Parameters

	
	permission – The permission to check.

	hidden – Determine if a 404 error (True) or 401/403 error
(False) should be returned if the permission is rejected (i.e.
hide or reveal the existence of a particular object).

	
invenio_files_rest.views.default_partfactory(part_number=None, content_length=None, content_type=None, content_md5=None)

	Get default part factory.

	Parameters

	
	part_number – The part number. (Default: None)

	content_length – The content length. (Default: None)

	content_type – The HTTP Content-Type. (Default: None)

	content_md5 – The content MD5. (Default: None)

	Returns

	The content length, the part number, the stream, the content
type, MD5 of the content.

	
invenio_files_rest.views.ensure_input_stream_is_not_exhausted(f)

	Make sure that the input stream has not been read already.

	
invenio_files_rest.views.invalid_subresource_validator(value)

	Ensure subresource.

	
invenio_files_rest.views.location_view(**kwargs)

	Service resource.

	Parameters

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Union [https://docs.python.org/3/library/typing.html#typing.Union][Headers, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]]]]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], int [https://docs.python.org/3/library/functions.html#int]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], int [https://docs.python.org/3/library/functions.html#int], Union [https://docs.python.org/3/library/typing.html#typing.Union][Headers, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]]]]], WSGIApplication]

	
invenio_files_rest.views.minsize_validator(value)

	Validate Content-Length header.

	Raises

	invenio_files_rest.errors.FileSizeError – If the value is less
than invenio_files_rest.config.FILES_REST_MIN_FILE_SIZE size.

	
invenio_files_rest.views.need_bucket_permission(action, hidden=True)

	Get permission for buckets or abort.

	Parameters

	
	object_getter – The function used to retrieve the object and pass it
to the permission factory.

	action – The action needed.

	hidden – Determine which kind of error to return. (Default: True)

	
invenio_files_rest.views.need_location_permission(action, hidden=True)

	Get permission for buckets or abort.

	Parameters

	
	object_getter – The function used to retrieve the object and pass it
to the permission factory.

	action – The action needed.

	hidden – Determine which kind of error to return. (Default: True)

	
invenio_files_rest.views.need_permissions(object_getter, action, hidden=True)

	Get permission for buckets or abort.

	Parameters

	
	object_getter – The function used to retrieve the object and pass it
to the permission factory.

	action – The action needed.

	hidden – Determine which kind of error to return. (Default: True)

	
invenio_files_rest.views.ngfileupload_partfactory(part_number=None, content_length=None, uploaded_file=None)

	Part factory for ng-file-upload.

	Parameters

	
	part_number – The part number. (Default: None)

	content_length – The content length. (Default: None)

	uploaded_file – The upload request. (Default: None)

	Returns

	The content length, part number, stream, HTTP Content-Type
header.

	
invenio_files_rest.views.ngfileupload_uploadfactory(content_length=None, content_type=None, uploaded_file=None)

	Get default put factory.

If Content-Type is 'multipart/form-data' then the stream is aborted.

	Parameters

	
	content_length – The content length. (Default: None)

	content_type – The HTTP Content-Type. (Default: None)

	uploaded_file – The upload request. (Default: None)

	file_tags_header – The file tags. (Default: None)

	Returns

	A tuple containing stream, content length, and empty header.

	
invenio_files_rest.views.object_view(**kwargs)

	Object item resource.

	Parameters

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Union [https://docs.python.org/3/library/typing.html#typing.Union][Headers, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]]]]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], int [https://docs.python.org/3/library/functions.html#int]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][Response, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], int [https://docs.python.org/3/library/functions.html#int], Union [https://docs.python.org/3/library/typing.html#typing.Union][Headers, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]]]]]], WSGIApplication]

	
invenio_files_rest.views.parse_header_tags()

	Parse tags specified in the HTTP request header.

	
invenio_files_rest.views.pass_bucket(f)

	Decorate to retrieve a bucket.

	
invenio_files_rest.views.pass_multipart(with_completed=False)

	Decorate to retrieve an object.

	
invenio_files_rest.views.stream_uploadfactory(content_md5=None, content_length=None, content_type=None)

	Get default put factory.

If Content-Type is 'multipart/form-data' then the stream is aborted.

	Parameters

	
	content_md5 – The content MD5. (Default: None)

	content_length – The content length. (Default: None)

	content_type – The HTTP Content-Type. (Default: None)

	Returns

	The stream, content length, MD5 of the content.

	
invenio_files_rest.views.validate_tag(key, value)

	Validate a tag.

Keys must be less than 128 chars and values must be less than 256 chars.

Form parser

Werkzeug form data parser customization.

	
class invenio_files_rest.formparser.FormDataParser(stream_factory=None, charset='utf-8', errors='replace', max_form_memory_size=None, max_content_length=None, cls=None, silent=True, *, max_form_parts=None)

	Custom form data parser.

	Parameters

	
	stream_factory (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TStreamFactory]) –

	charset (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	max_form_memory_size (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) –

	max_content_length (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) –

	cls (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Type [https://docs.python.org/3/library/typing.html#typing.Type][MultiDict [https://werkzeug.palletsprojects.com/en/2.2.x/datastructures/#werkzeug.datastructures.MultiDict]]]) –

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) –

	max_form_parts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) –

	
parse(stream, mimetype, content_length, options=None)

	Parse the information from the given request.

	Parameters

	
	stream – An input stream.

	mimetype – The mimetype of the data.

	content_length – The content length of the incoming data.

	options – Optional mimetype parameters (used for
the multipart boundary for instance).

	Returns

	A tuple in the form (stream, form, files).

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/invenio-files-rest/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Invenio-Files-REST could always use more documentation, whether as part of the
official Invenio-Files-REST docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/inveniosoftware/invenio-files-rest/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up invenio for local development.

	Fork the invenio repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:inveniosoftware/invenio-files-rest.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv invenio-files-rest
$ cd invenio-files-rest/
$ pip install -e .[all]

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass tests:

$./run-tests.sh

The tests will provide you with test coverage and also check PEP8
(code style), PEP257 (documentation), flake8 as well as build the Sphinx
documentation and run doctests.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests and must not decrease test coverage.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring.

	The pull request should work for Python 3.6, 3.7, 3.8 and 3.9. Check
https://github.com/inveniosoftware/invenio-files-rest/actions?query=event%3Apull_request
and make sure that the tests pass for all supported Python versions.

Changes

Version 1.5.0 (release 2023-03-02)

	remove deprecated flask-babelex dependency and imports

	install invenio-i18n

Version 1.4.0 (release 2023-01-24)

	tasks: add orphan cleaning celery task

Version 1.3.3 (release 2022-04-06)

	Fix Flask v2.1 issues.

	Refactor dependencies to respect Invenio dependency strategy and remove
pin on Flask-Login.

Version 1.3.2 (release 2022-02-14)

	Fix deprecation warnings from marshmallow.

Version 1.3.1 (release 2022-01-31)

	Fix a race-condition by enforcing integrity constraint on is head. An issue
was detected that could produce two head versions of the same object. This
fix adds a partial index in PostgreSQL to ensure that the race condition
throws an integrity error when trying to commit. Partial indexes is only
available on PostgreSQL.

	Fix for the sync method and signals signature.

Version 1.3.0 (released 2021-10-18)

	Bumped minimum PyFilesystem dependency to v2. Note that, setuptools v58+ have
dropped support for use2to3, thus PyFilesystem v0.5.5 no longer installs on
Python 3 when using setuptools v58 or greater.

Version 1.2.0 (released 2020-05-14)

	Adds optional file streaming using a reverse proxy (e.g. NGINX).

Version 1.1.1 (released 2020-02-24)

	Makes cli location command backwards compatible.

Version 1.1.0 (released 2020-01-19)

	Moves location from command to group

	Allows listing locations via de CLI

	Allows setting a location as default

	Get by name on the Location object returns None when not found instead of raising an exception

	Other bug fixes

Version 1.0.6 (released 2019-11-22)

	Bump version and add to installation requirements invenio-celery

	Add documentation of module usage

	Remove storage_class parameter from Bucket create when POST to Location resource

Version 1.0.5 (released 2019-11-21)

	Add signals for deletion and upload of files

Version 1.0.4 (released 2019-11-20)

	Fix StorageError type returned

Version 1.0.3 (released 2019-11-15)

	Increase invenio-rest version to support Marshmallow 2 and 3 migration

Version 1.0.2 (released 2019-11-14)

	Adds optional serializer_mapping and view_name in json_serializer method

Version 1.0.1 (released 2019-08-01)

	Adds support for marshmallow 2 and 3.

Version 1.0.0 (released 2019-07-22)

	Initial public release.

License

MIT License

Copyright (C) 2015-2019 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note

In applying this license, CERN does not waive the privileges and immunities
granted to it by virtue of its status as an Intergovernmental Organization or
submit itself to any jurisdiction.

Contributors

	Alexander Ioannidis

	Alizee Pace

	Chiara Bigarella

	David Zerulla

	Emanuel Dima

	Esteban J. G. Gabancho

	Harris Tzovanakis

	Ioan Ungurean

	Jacopo Notarstefano

	Javier Delgado

	Javier Martin Montull

	Jiri Kuncar

	Jose Benito Gonzalez Lopez

	Krzysztof Nowak

	Lars Holm Nielsen

	Leonardo Rossi

	Nicola Tarocco

	Nicolas Harraudeau

	Niklas Persson

	Nikos Filippakis

	Sami Hiltunen

	Samuele Kaplun

	Sebastian Witowski

	Spiros Delviniotis

	Steven Loria

	Tibor Simko

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 invenio_files_rest	

 	
 	
 invenio_files_rest.config	

 	
 	
 invenio_files_rest.errors	

 	
 	
 invenio_files_rest.ext	

 	
 	
 invenio_files_rest.formparser	

 	
 	
 invenio_files_rest.helpers	

 	
 	
 invenio_files_rest.limiters	

 	
 	
 invenio_files_rest.models	

 	
 	
 invenio_files_rest.permissions	

 	
 	
 invenio_files_rest.signals	

 	
 	
 invenio_files_rest.storage	

 	
 	
 invenio_files_rest.tasks	

 	
 	
 invenio_files_rest.views	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | U
 | V
 | W

A

 	
 	all() (invenio_files_rest.models.Bucket class method)

 	(invenio_files_rest.models.Location class method)

 	
 	as_uuid() (in module invenio_files_rest.views)

B

 	
 	basename (invenio_files_rest.models.ObjectVersion property)

 	Bucket (class in invenio_files_rest.models)

 	bucket (invenio_files_rest.models.BucketTag attribute)

 	(invenio_files_rest.models.MultipartObject attribute)

 	(invenio_files_rest.models.ObjectVersion attribute)

 	bucket_id (invenio_files_rest.models.MultipartObject attribute)

 	(invenio_files_rest.models.ObjectVersion attribute)

 	bucket_listmultiparts_all (in module invenio_files_rest.permissions)

 	bucket_read_all (in module invenio_files_rest.permissions)

 	
 	bucket_read_versions_all (in module invenio_files_rest.permissions)

 	bucket_update_all (in module invenio_files_rest.permissions)

 	bucket_view() (in module invenio_files_rest.views)

 	BucketListMultiparts (in module invenio_files_rest.permissions)

 	BucketLockedError

 	BucketRead (in module invenio_files_rest.permissions)

 	BucketReadVersions (in module invenio_files_rest.permissions)

 	BucketResource (class in invenio_files_rest.views)

 	BucketTag (class in invenio_files_rest.models)

 	BucketUpdate (in module invenio_files_rest.permissions)

C

 	
 	check_object_permission() (invenio_files_rest.views.ObjectResource static method)

 	check_permission() (in module invenio_files_rest.views)

 	checksum (invenio_files_rest.models.FileInstance attribute)

 	(invenio_files_rest.models.Part attribute)

 	checksum() (invenio_files_rest.storage.FileStorage method)

 	chunk_size (invenio_files_rest.models.MultipartObject attribute)

 	chunk_size_or_default() (in module invenio_files_rest.helpers)

 	clear_last_check() (invenio_files_rest.models.FileInstance method)

 	clear_orphaned_files() (in module invenio_files_rest.tasks)

 	complete() (invenio_files_rest.models.MultipartObject method)

 	completed (invenio_files_rest.models.MultipartObject attribute)

 	compute_checksum() (in module invenio_files_rest.helpers)

 	compute_md5_checksum() (in module invenio_files_rest.helpers)

 	copy() (invenio_files_rest.models.ObjectVersion method)

 	(invenio_files_rest.models.ObjectVersionTag method)

 	(invenio_files_rest.storage.FileStorage method)

 	copy_contents() (invenio_files_rest.models.FileInstance method)

 	
 	count() (invenio_files_rest.models.Part class method)

 	create() (invenio_files_rest.models.Bucket class method)

 	(invenio_files_rest.models.BucketTag class method)

 	(invenio_files_rest.models.FileInstance class method)

 	(invenio_files_rest.models.MultipartObject class method)

 	(invenio_files_rest.models.ObjectVersion class method)

 	(invenio_files_rest.models.ObjectVersionTag class method)

 	(invenio_files_rest.models.Part class method)

 	create_file_streaming_redirect_response() (in module invenio_files_rest.helpers)

 	create_object() (invenio_files_rest.views.ObjectResource method)

 	create_or_update() (invenio_files_rest.models.BucketTag class method)

 	(invenio_files_rest.models.ObjectVersionTag class method)

 	created (invenio_files_rest.models.Bucket attribute)

 	(invenio_files_rest.models.FileInstance attribute)

 	(invenio_files_rest.models.Location attribute)

 	(invenio_files_rest.models.MultipartObject attribute)

 	(invenio_files_rest.models.ObjectVersion attribute)

 	(invenio_files_rest.models.Part attribute)

D

 	
 	default (invenio_files_rest.models.Location attribute)

 	default_checksum_verification_files_query() (in module invenio_files_rest.tasks)

 	default_location (invenio_files_rest.models.Bucket attribute)

 	default_partfactory() (in module invenio_files_rest.views)

 	default_storage_class (invenio_files_rest.models.Bucket attribute)

 	delete() (invenio_files_rest.models.Bucket class method)

 	(invenio_files_rest.models.BucketTag class method)

 	(invenio_files_rest.models.FileInstance method)

 	(invenio_files_rest.models.MultipartObject method)

 	(invenio_files_rest.models.ObjectVersion class method)

 	(invenio_files_rest.models.ObjectVersionTag class method)

 	(invenio_files_rest.models.Part class method)

 	(invenio_files_rest.storage.FileStorage method)

 	(invenio_files_rest.storage.PyFSFileStorage method)

 	(invenio_files_rest.views.ObjectResource method)

 	
 	delete_object() (invenio_files_rest.views.ObjectResource method)

 	deleted (invenio_files_rest.models.Bucket attribute)

 	(invenio_files_rest.models.ObjectVersion property)

 	DuplicateTagError

E

 	
 	end_byte (invenio_files_rest.models.Part property)

 	ensure_input_stream_is_not_exhausted() (in module invenio_files_rest.views)

 	
 	ExhaustedStreamError

 	expected_part_size() (invenio_files_rest.models.MultipartObject method)

F

 	
 	file (invenio_files_rest.models.MultipartObject attribute)

 	(invenio_files_rest.models.ObjectVersion attribute)

 	file_deleted (in module invenio_files_rest.signals)

 	file_downloaded (in module invenio_files_rest.signals)

 	file_id (invenio_files_rest.models.MultipartObject attribute)

 	(invenio_files_rest.models.ObjectVersion attribute)

 	file_size_limiters() (in module invenio_files_rest.limiters)

 	file_uploaded (in module invenio_files_rest.signals)

 	FileInstance (class in invenio_files_rest.models)

 	FileInstanceAlreadySetError

 	FileInstanceUnreadableError

 	FILES_REST_DEFAULT_MAX_FILE_SIZE (in module invenio_files_rest.config)

 	FILES_REST_DEFAULT_QUOTA_SIZE (in module invenio_files_rest.config)

 	FILES_REST_DEFAULT_STORAGE_CLASS (in module invenio_files_rest.config)

 	FILES_REST_FILE_TAGS_HEADER (in module invenio_files_rest.config)

 	FILES_REST_FILE_URI_MAX_LEN (in module invenio_files_rest.config)

 	FILES_REST_MIN_FILE_SIZE (in module invenio_files_rest.config)

 	FILES_REST_MULTIPART_CHUNKSIZE_MAX (in module invenio_files_rest.config)

 	FILES_REST_MULTIPART_CHUNKSIZE_MIN (in module invenio_files_rest.config)

 	
 	FILES_REST_MULTIPART_EXPIRES (in module invenio_files_rest.config)

 	FILES_REST_MULTIPART_MAX_PARTS (in module invenio_files_rest.config)

 	FILES_REST_MULTIPART_PART_FACTORIES (in module invenio_files_rest.config)

 	FILES_REST_OBJECT_KEY_MAX_LEN (in module invenio_files_rest.config)

 	FILES_REST_PERMISSION_FACTORY (in module invenio_files_rest.config)

 	FILES_REST_SIZE_LIMITERS (in module invenio_files_rest.config)

 	FILES_REST_STORAGE_CLASS_LIST (in module invenio_files_rest.config)

 	FILES_REST_STORAGE_FACTORY (in module invenio_files_rest.config)

 	FILES_REST_STORAGE_PATH_DIMENSIONS (in module invenio_files_rest.config)

 	FILES_REST_STORAGE_PATH_SPLIT_LENGTH (in module invenio_files_rest.config)

 	FILES_REST_TASK_WAIT_INTERVAL (in module invenio_files_rest.config)

 	FILES_REST_TASK_WAIT_MAX_SECONDS (in module invenio_files_rest.config)

 	FILES_REST_UPLOAD_FACTORIES (in module invenio_files_rest.config)

 	FILES_REST_XSENDFILE_ENABLED (in module invenio_files_rest.config)

 	FILES_REST_XSENDFILE_RESPONSE_FUNC() (in module invenio_files_rest.config)

 	FilesException

 	FileSizeError

 	FileSizeLimit (class in invenio_files_rest.limiters)

 	FileStorage (class in invenio_files_rest.storage)

 	FormDataParser (class in invenio_files_rest.formparser)

G

 	
 	get() (invenio_files_rest.models.Bucket class method)

 	(invenio_files_rest.models.BucketTag class method)

 	(invenio_files_rest.models.FileInstance class method)

 	(invenio_files_rest.models.MultipartObject class method)

 	(invenio_files_rest.models.ObjectVersion class method)

 	(invenio_files_rest.models.ObjectVersionTag class method)

 	(invenio_files_rest.views.BucketResource method)

 	(invenio_files_rest.views.ObjectResource method)

 	get_by_bucket() (invenio_files_rest.models.ObjectVersion class method)

 	get_by_name() (invenio_files_rest.models.Location class method)

 	get_by_uri() (invenio_files_rest.models.FileInstance class method)

 	
 	get_default() (invenio_files_rest.models.Location class method)

 	get_description() (invenio_files_rest.errors.MissingQueryParameter method)

 	get_errors() (invenio_files_rest.errors.StorageError method)

 	get_object() (invenio_files_rest.views.ObjectResource class method)

 	get_or_create() (invenio_files_rest.models.Part class method)

 	get_or_none() (invenio_files_rest.models.Part class method)

 	get_tags() (invenio_files_rest.models.Bucket method)

 	(invenio_files_rest.models.ObjectVersion method)

 	get_value() (invenio_files_rest.models.BucketTag class method)

 	(invenio_files_rest.models.ObjectVersionTag class method)

 	get_versions() (invenio_files_rest.models.ObjectVersion class method)

H

 	
 	head() (invenio_files_rest.views.BucketResource method)

I

 	
 	id (invenio_files_rest.models.Bucket attribute)

 	(invenio_files_rest.models.FileInstance attribute)

 	(invenio_files_rest.models.Location attribute)

 	init_app() (invenio_files_rest.ext.InvenioFilesREST method)

 	init_config() (invenio_files_rest.ext.InvenioFilesREST method)

 	init_contents() (invenio_files_rest.models.FileInstance method)

 	initialize() (invenio_files_rest.storage.FileStorage method)

 	(invenio_files_rest.storage.PyFSFileStorage method)

 	invalid_subresource_validator() (in module invenio_files_rest.views)

 	InvalidKeyError

 	InvalidOperationError

 	InvalidTagError

 	
 invenio_files_rest

 	module

 	
 invenio_files_rest.config

 	module

 	
 invenio_files_rest.errors

 	module

 	
 invenio_files_rest.ext

 	module

 	
 invenio_files_rest.formparser

 	module

 	
 	
 invenio_files_rest.helpers

 	module

 	
 invenio_files_rest.limiters

 	module

 	
 invenio_files_rest.models

 	module

 	
 invenio_files_rest.permissions

 	module

 	
 invenio_files_rest.signals

 	module

 	
 invenio_files_rest.storage

 	module

 	
 invenio_files_rest.tasks

 	module

 	
 invenio_files_rest.views

 	module

 	InvenioFilesREST (class in invenio_files_rest.ext)

 	is_head (invenio_files_rest.models.ObjectVersion attribute)

 	is_valid_chunksize() (invenio_files_rest.models.MultipartObject static method)

 	is_valid_size() (invenio_files_rest.models.MultipartObject static method)

 	ix_uq_partial_files_object_is_head_dll() (invenio_files_rest.models.ObjectVersion class method)

K

 	
 	key (invenio_files_rest.models.BucketTag attribute)

 	(invenio_files_rest.models.MultipartObject attribute)

 	(invenio_files_rest.models.ObjectVersion attribute)

 	(invenio_files_rest.models.ObjectVersionTag attribute)

L

 	
 	last_check (invenio_files_rest.models.FileInstance attribute)

 	last_check_at (invenio_files_rest.models.FileInstance attribute)

 	last_part_number (invenio_files_rest.models.MultipartObject property)

 	last_part_size (invenio_files_rest.models.MultipartObject property)

 	listobjects() (invenio_files_rest.views.BucketResource method)

 	Location (class in invenio_files_rest.models)

 	
 	location (invenio_files_rest.models.Bucket attribute)

 	location_update_all (in module invenio_files_rest.permissions)

 	location_view() (in module invenio_files_rest.views)

 	LocationResource (class in invenio_files_rest.views)

 	LocationUpdate (in module invenio_files_rest.permissions)

 	locked (invenio_files_rest.models.Bucket attribute)

M

 	
 	make_path() (in module invenio_files_rest.helpers)

 	MAX_CONTENT_LENGTH (in module invenio_files_rest.config)

 	max_file_size (invenio_files_rest.models.Bucket attribute)

 	merge_multipartobject() (in module invenio_files_rest.tasks)

 	merge_parts() (invenio_files_rest.models.MultipartObject method)

 	methods (invenio_files_rest.views.BucketResource attribute)

 	(invenio_files_rest.views.LocationResource attribute)

 	(invenio_files_rest.views.ObjectResource attribute)

 	migrate_file() (in module invenio_files_rest.tasks)

 	mimetype (invenio_files_rest.models.ObjectVersion attribute)

 	MIMETYPE_WHITELIST (in module invenio_files_rest.helpers)

 	minsize_validator() (in module invenio_files_rest.views)

 	MissingQueryParameter

 	
 module

 	invenio_files_rest

 	invenio_files_rest.config

 	invenio_files_rest.errors

 	invenio_files_rest.ext

 	invenio_files_rest.formparser

 	invenio_files_rest.helpers

 	invenio_files_rest.limiters

 	invenio_files_rest.models

 	invenio_files_rest.permissions

 	invenio_files_rest.signals

 	invenio_files_rest.storage

 	invenio_files_rest.tasks

 	invenio_files_rest.views

 	
 	multipart (invenio_files_rest.models.Part attribute)

 	multipart_complete() (invenio_files_rest.views.ObjectResource method)

 	multipart_delete() (invenio_files_rest.views.ObjectResource method)

 	multipart_delete_all (in module invenio_files_rest.permissions)

 	multipart_init() (invenio_files_rest.views.ObjectResource method)

 	multipart_listparts() (invenio_files_rest.views.ObjectResource method)

 	multipart_listuploads() (invenio_files_rest.views.BucketResource method)

 	multipart_read_all (in module invenio_files_rest.permissions)

 	multipart_uploadpart() (invenio_files_rest.views.ObjectResource method)

 	MultipartAlreadyCompleted

 	MultipartDelete (in module invenio_files_rest.permissions)

 	MultipartException

 	MultipartInvalidChunkSize

 	MultipartInvalidPartNumber

 	MultipartInvalidSize

 	MultipartMissingParts

 	MultipartNoPart

 	MultipartNotCompleted

 	MultipartObject (class in invenio_files_rest.models)

 	MultipartRead (in module invenio_files_rest.permissions)

N

 	
 	name (invenio_files_rest.models.Location attribute)

 	need_bucket_permission() (in module invenio_files_rest.views)

 	need_location_permission() (in module invenio_files_rest.views)

 	
 	need_permissions() (in module invenio_files_rest.views)

 	ngfileupload_partfactory() (in module invenio_files_rest.views)

 	ngfileupload_uploadfactory() (in module invenio_files_rest.views)

O

 	
 	object_delete_all (in module invenio_files_rest.permissions)

 	object_delete_version_all (in module invenio_files_rest.permissions)

 	object_read_all (in module invenio_files_rest.permissions)

 	object_read_version_all (in module invenio_files_rest.permissions)

 	object_version (invenio_files_rest.models.ObjectVersionTag attribute)

 	object_view() (in module invenio_files_rest.views)

 	ObjectDelete (in module invenio_files_rest.permissions)

 	
 	ObjectDeleteVersion (in module invenio_files_rest.permissions)

 	ObjectRead (in module invenio_files_rest.permissions)

 	ObjectReadVersion (in module invenio_files_rest.permissions)

 	ObjectResource (class in invenio_files_rest.views)

 	ObjectVersion (class in invenio_files_rest.models)

 	ObjectVersionTag (class in invenio_files_rest.models)

 	open() (invenio_files_rest.storage.FileStorage method)

 	(invenio_files_rest.storage.PyFSFileStorage method)

P

 	
 	parse() (invenio_files_rest.formparser.FormDataParser method)

 	parse_header_tags() (in module invenio_files_rest.views)

 	Part (class in invenio_files_rest.models)

 	part_number (invenio_files_rest.models.Part attribute)

 	part_size (invenio_files_rest.models.Part property)

 	pass_bucket() (in module invenio_files_rest.views)

 	pass_multipart() (in module invenio_files_rest.views)

 	
 	permission_factory() (in module invenio_files_rest.permissions)

 	populate_from_path() (in module invenio_files_rest.helpers)

 	post() (invenio_files_rest.views.LocationResource method)

 	(invenio_files_rest.views.ObjectResource method)

 	progress_updater() (in module invenio_files_rest.tasks)

 	put() (invenio_files_rest.views.ObjectResource method)

 	pyfs_storage_factory() (in module invenio_files_rest.storage)

 	PyFSFileStorage (class in invenio_files_rest.storage)

Q

 	
 	query_by_bucket() (invenio_files_rest.models.MultipartObject class method)

 	query_by_multipart() (invenio_files_rest.models.Part class method)

 	
 	query_expired() (invenio_files_rest.models.MultipartObject class method)

 	quota_left (invenio_files_rest.models.Bucket property)

 	quota_size (invenio_files_rest.models.Bucket attribute)

R

 	
 	readable (invenio_files_rest.models.FileInstance attribute)

 	relink_all() (invenio_files_rest.models.ObjectVersion class method)

 	remove() (invenio_files_rest.models.Bucket method)

 	(invenio_files_rest.models.ObjectVersion method)

 	
 	remove_expired_multipartobjects() (in module invenio_files_rest.tasks)

 	remove_file_data() (in module invenio_files_rest.tasks)

 	restore() (invenio_files_rest.models.ObjectVersion method)

S

 	
 	sanitize_mimetype() (in module invenio_files_rest.helpers)

 	save() (invenio_files_rest.storage.FileStorage method)

 	(invenio_files_rest.storage.PyFSFileStorage method)

 	schedule_checksum_verification() (in module invenio_files_rest.tasks)

 	send_file() (invenio_files_rest.models.FileInstance method)

 	(invenio_files_rest.models.ObjectVersion method)

 	(invenio_files_rest.storage.FileStorage method)

 	send_object() (invenio_files_rest.views.ObjectResource static method)

 	send_stream() (in module invenio_files_rest.helpers)

 	set_contents() (invenio_files_rest.models.FileInstance method)

 	(invenio_files_rest.models.ObjectVersion method)

 	(invenio_files_rest.models.Part method)

 	set_file() (invenio_files_rest.models.ObjectVersion method)

 	
 	set_location() (invenio_files_rest.models.ObjectVersion method)

 	set_uri() (invenio_files_rest.models.FileInstance method)

 	size (invenio_files_rest.models.Bucket attribute)

 	(invenio_files_rest.models.FileInstance attribute)

 	(invenio_files_rest.models.MultipartObject attribute)

 	size_limit (invenio_files_rest.models.Bucket property)

 	snapshot() (invenio_files_rest.models.Bucket method)

 	start_byte (invenio_files_rest.models.Part property)

 	storage() (invenio_files_rest.models.FileInstance method)

 	storage_class (invenio_files_rest.models.FileInstance attribute)

 	StorageError

 	stream_uploadfactory() (in module invenio_files_rest.views)

 	sync() (invenio_files_rest.models.Bucket method)

U

 	
 	UnexpectedFileSizeError

 	update() (invenio_files_rest.storage.FileStorage method)

 	(invenio_files_rest.storage.PyFSFileStorage method)

 	update_checksum() (invenio_files_rest.models.FileInstance method)

 	update_contents() (invenio_files_rest.models.FileInstance method)

 	updated (invenio_files_rest.models.Bucket attribute)

 	(invenio_files_rest.models.FileInstance attribute)

 	(invenio_files_rest.models.Location attribute)

 	(invenio_files_rest.models.MultipartObject attribute)

 	(invenio_files_rest.models.ObjectVersion attribute)

 	(invenio_files_rest.models.Part attribute)

 	
 	upload_id (invenio_files_rest.models.MultipartObject attribute)

 	(invenio_files_rest.models.Part attribute)

 	uri (invenio_files_rest.models.FileInstance attribute)

 	(invenio_files_rest.models.Location attribute)

V

 	
 	validate_key() (invenio_files_rest.models.MultipartObject method)

 	(invenio_files_rest.models.ObjectVersion method)

 	validate_name() (invenio_files_rest.models.Location method)

 	validate_storage_class() (invenio_files_rest.models.Bucket method)

 	validate_tag() (in module invenio_files_rest.views)

 	validate_uri() (invenio_files_rest.models.FileInstance method)

 	
 	value (invenio_files_rest.models.BucketTag attribute)

 	(invenio_files_rest.models.ObjectVersionTag attribute)

 	verify_checksum() (in module invenio_files_rest.tasks)

 	(invenio_files_rest.models.FileInstance method)

 	version_id (invenio_files_rest.models.ObjectVersion attribute)

 	(invenio_files_rest.models.ObjectVersionTag attribute)

W

 	
 	writable (invenio_files_rest.models.FileInstance attribute)

 _images/data_model.png
version_id uuid uuid
file_id uuid 1_I_ uri varchar(255)
bucket_id uuid g storage_class varchar(1)
key varchar(255) size integer
is_head boolean checksum varchar(255)

=]
id L oia integer
default_location integer 1—I_ name varchar(20)
default_storage_class varchar(255) uri varchar(255)
locked boolean default boolean

deleted boolean

_static/data_model.png
version_id uuid uuid
file_id uuid 1_I_ uri varchar(255)
bucket_id uuid g storage_class varchar(1)
key varchar(255) size integer
is_head boolean checksum varchar(255)

=]
id L oia integer
default_location integer 1—I_ name varchar(20)
default_storage_class varchar(255) uri varchar(255)
locked boolean default boolean

deleted boolean

_static/file.png

nav.xhtml

 Table of Contents

 		
 Invenio-Files-REST

 		
 Overview

 		
 The physical layer

 		
 Location

 		
 Storage

 		
 FileInstance

 		
 The abstraction layer

 		
 ObjectVersion

 		
 Bucket

 		
 REST APIs

 		
 Installation

 		
 Configuration

 		
 FILES_REST_DEFAULT_MAX_FILE_SIZE

 		
 FILES_REST_DEFAULT_QUOTA_SIZE

 		
 FILES_REST_DEFAULT_STORAGE_CLASS

 		
 FILES_REST_FILE_TAGS_HEADER

 		
 FILES_REST_FILE_URI_MAX_LEN

 		
 FILES_REST_MIN_FILE_SIZE

 		
 FILES_REST_MULTIPART_CHUNKSIZE_MAX

 		
 FILES_REST_MULTIPART_CHUNKSIZE_MIN

 		
 FILES_REST_MULTIPART_EXPIRES

 		
 FILES_REST_MULTIPART_MAX_PARTS

 		
 FILES_REST_MULTIPART_PART_FACTORIES

 		
 FILES_REST_OBJECT_KEY_MAX_LEN

 		
 FILES_REST_PERMISSION_FACTORY

 		
 FILES_REST_SIZE_LIMITERS

 		
 FILES_REST_STORAGE_CLASS_LIST

 		
 FILES_REST_STORAGE_FACTORY

 		
 FILES_REST_STORAGE_PATH_DIMENSIONS

 		
 FILES_REST_STORAGE_PATH_SPLIT_LENGTH

 		
 FILES_REST_TASK_WAIT_INTERVAL

 		
 FILES_REST_TASK_WAIT_MAX_SECONDS

 		
 FILES_REST_UPLOAD_FACTORIES

 		
 FILES_REST_XSENDFILE_ENABLED

 		
 FILES_REST_XSENDFILE_RESPONSE_FUNC()

 		
 MAX_CONTENT_LENGTH

 		
 Usage

 		
 Getting started

 		
 Create a location

 		
 Create a bucket

 		
 Create objects

 		
 Retrieve objects

 		
 Data model

 		
 Buckets

 		
 ObjectVersion

 		
 FileInstance

 		
 REST APIs

 		
 Create a bucket

 		
 Uploading Files

 		
 Serving files

 		
 API Reference

 		
 Deleting files

 		
 Soft deletion

 		
 Hard deletion

 		
 Authorization

 		
 Response codes

 		
 Authorization definition

 		
 Security

 		
 Signals

 		
 Integrity

 		
 Storage Backends

 		
 Build your own Storage Backend

 		
 JS Uploaders

 		
 Multipart Upload

 		
 Large Files

 		
 Data Migration

 		
 API Docs

 		
 InvenioFilesREST

 		
 InvenioFilesREST.init_app()

 		
 InvenioFilesREST.init_config()

 		
 Models

 		
 Bucket

 		
 BucketTag

 		
 FileInstance

 		
 Location

 		
 MultipartObject

 		
 ObjectVersion

 		
 ObjectVersionTag

 		
 Part

 		
 Storage

 		
 FileStorage

 		
 PyFSFileStorage

 		
 pyfs_storage_factory()

 		
 Signals

 		
 file_deleted

 		
 file_downloaded

 		
 file_uploaded

 		
 File streaming

 		
 MIMETYPE_WHITELIST

 		
 chunk_size_or_default()

 		
 compute_checksum()

 		
 compute_md5_checksum()

 		
 create_file_streaming_redirect_response()

 		
 make_path()

 		
 populate_from_path()

 		
 sanitize_mimetype()

 		
 send_stream()

 		
 Tasks

 		
 clear_orphaned_files

 		
 default_checksum_verification_files_query()

 		
 merge_multipartobject

 		
 migrate_file

 		
 progress_updater()

 		
 remove_expired_multipartobjects

 		
 remove_file_data

 		
 schedule_checksum_verification

 		
 verify_checksum

 		
 Exceptions

 		
 BucketLockedError

 		
 DuplicateTagError

 		
 ExhaustedStreamError

 		
 FileInstanceAlreadySetError

 		
 FileInstanceUnreadableError

 		
 FileSizeError

 		
 FilesException

 		
 InvalidKeyError

 		
 InvalidOperationError

 		
 InvalidTagError

 		
 MissingQueryParameter

 		
 MultipartAlreadyCompleted

 		
 MultipartException

 		
 MultipartInvalidChunkSize

 		
 MultipartInvalidPartNumber

 		
 MultipartInvalidSize

 		
 MultipartMissingParts

 		
 MultipartNoPart

 		
 MultipartNotCompleted

 		
 StorageError

 		
 UnexpectedFileSizeError

 		
 Limiters

 		
 FileSizeLimit

 		
 file_size_limiters()

 		
 Permissions

 		
 BucketListMultiparts

 		
 BucketRead

 		
 BucketReadVersions

 		
 BucketUpdate

 		
 LocationUpdate

 		
 MultipartDelete

 		
 MultipartRead

 		
 ObjectDelete

 		
 ObjectDeleteVersion

 		
 ObjectRead

 		
 ObjectReadVersion

 		
 bucket_listmultiparts_all

 		
 bucket_read_all

 		
 bucket_read_versions_all

 		
 bucket_update_all

 		
 location_update_all

 		
 multipart_delete_all

 		
 multipart_read_all

 		
 object_delete_all

 		
 object_delete_version_all

 		
 object_read_all

 		
 object_read_version_all

 		
 permission_factory()

 		
 Views

 		
 BucketResource

 		
 LocationResource

 		
 ObjectResource

 		
 as_uuid()

 		
 bucket_view()

 		
 check_permission()

 		
 default_partfactory()

 		
 ensure_input_stream_is_not_exhausted()

 		
 invalid_subresource_validator()

 		
 location_view()

 		
 minsize_validator()

 		
 need_bucket_permission()

 		
 need_location_permission()

 		
 need_permissions()

 		
 ngfileupload_partfactory()

 		
 ngfileupload_uploadfactory()

 		
 object_view()

 		
 parse_header_tags()

 		
 pass_bucket()

 		
 pass_multipart()

 		
 stream_uploadfactory()

 		
 validate_tag()

 		
 Form parser

 		
 FormDataParser

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Changes

 		
 License

 		
 Contributors

_static/minus.png

_static/plus.png

